{"title":"具有主要静态/部分动态可重构阵列加速器的4.5至13倍节能嵌入式微处理器","authors":"Itaru Hida, Dahoo Kim, T. Asai, M. Motomura","doi":"10.1109/ASSCC.2014.7008854","DOIUrl":null,"url":null,"abstract":"Conventional processors are energy in-efficient in that they fail to utilize the fact that most of their time and energy are spent on heavily-recursively executed small code segments. A DYNaSTA accelerator, proposed and implemented, is an architectural solution to such a problem. It is an reconfigurable array accelerator featuring an hybrid architecture: only a limited portion is reconfigured dynamically (i.e., frequently) while the rest is reconfigured statically (i.e., only occasionally). This way, the DYNaSTA accelerator tries to achieve both flexibility and energy-efficiency at the same time. Results of power simulation and fabricated chip measurements have been quite encouraging: 4.5 to 13 times energy efficiency will be made possible by this accelerator when compared with a conventional embedded microprocessor.","PeriodicalId":161031,"journal":{"name":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 4.5 to 13 times energy-efficient embedded microprocessor with mainly-static/partially-dynamic reconfigurable array accelerator\",\"authors\":\"Itaru Hida, Dahoo Kim, T. Asai, M. Motomura\",\"doi\":\"10.1109/ASSCC.2014.7008854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional processors are energy in-efficient in that they fail to utilize the fact that most of their time and energy are spent on heavily-recursively executed small code segments. A DYNaSTA accelerator, proposed and implemented, is an architectural solution to such a problem. It is an reconfigurable array accelerator featuring an hybrid architecture: only a limited portion is reconfigured dynamically (i.e., frequently) while the rest is reconfigured statically (i.e., only occasionally). This way, the DYNaSTA accelerator tries to achieve both flexibility and energy-efficiency at the same time. Results of power simulation and fabricated chip measurements have been quite encouraging: 4.5 to 13 times energy efficiency will be made possible by this accelerator when compared with a conventional embedded microprocessor.\",\"PeriodicalId\":161031,\"journal\":{\"name\":\"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2014.7008854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2014.7008854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 4.5 to 13 times energy-efficient embedded microprocessor with mainly-static/partially-dynamic reconfigurable array accelerator
Conventional processors are energy in-efficient in that they fail to utilize the fact that most of their time and energy are spent on heavily-recursively executed small code segments. A DYNaSTA accelerator, proposed and implemented, is an architectural solution to such a problem. It is an reconfigurable array accelerator featuring an hybrid architecture: only a limited portion is reconfigured dynamically (i.e., frequently) while the rest is reconfigured statically (i.e., only occasionally). This way, the DYNaSTA accelerator tries to achieve both flexibility and energy-efficiency at the same time. Results of power simulation and fabricated chip measurements have been quite encouraging: 4.5 to 13 times energy efficiency will be made possible by this accelerator when compared with a conventional embedded microprocessor.