基于最优OOSM的自动驾驶车辆视觉目标跟踪

Zhen Jia, Arjuna Balasuriya
{"title":"基于最优OOSM的自动驾驶车辆视觉目标跟踪","authors":"Zhen Jia, Arjuna Balasuriya","doi":"10.1109/ITSC.2005.1520108","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm is proposed for the vision-based object identification and tracking by autonomous vehicles. In order to estimate the velocity of the tracked object, this algorithm fuses information captured by the vehicle's onboard sensors such as cameras and inertial motion sensors to determine the velocity and position of the object of interest in the world coordinate. However in this multiple sensor fusion based tracking system, the measurements from the same target can arrive out of sequence. This is called the \"out-of-sequence\" measurement (OOSM) problem. In this paper the 1-step-lag OOSM solution from Bar-Shalom is implemented to solve the problem. The target tracking performance with the OOSM solution is demonstrated through experimental results.","PeriodicalId":153203,"journal":{"name":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Visual target tracking for autonomous vehicles with the optimal OOSM solution\",\"authors\":\"Zhen Jia, Arjuna Balasuriya\",\"doi\":\"10.1109/ITSC.2005.1520108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an algorithm is proposed for the vision-based object identification and tracking by autonomous vehicles. In order to estimate the velocity of the tracked object, this algorithm fuses information captured by the vehicle's onboard sensors such as cameras and inertial motion sensors to determine the velocity and position of the object of interest in the world coordinate. However in this multiple sensor fusion based tracking system, the measurements from the same target can arrive out of sequence. This is called the \\\"out-of-sequence\\\" measurement (OOSM) problem. In this paper the 1-step-lag OOSM solution from Bar-Shalom is implemented to solve the problem. The target tracking performance with the OOSM solution is demonstrated through experimental results.\",\"PeriodicalId\":153203,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2005.1520108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2005.1520108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于视觉的自动驾驶车辆目标识别与跟踪算法。为了估计被跟踪物体的速度,该算法融合了车载传感器(如摄像头和惯性运动传感器)捕获的信息,以确定感兴趣物体在世界坐标中的速度和位置。然而,在这种基于多传感器融合的跟踪系统中,来自同一目标的测量值可能出现不顺序到达的情况。这被称为“乱序”测量(OOSM)问题。本文采用Bar-Shalom的一阶滞后OOSM方法来解决这一问题。实验结果验证了该方案的目标跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual target tracking for autonomous vehicles with the optimal OOSM solution
In this paper, an algorithm is proposed for the vision-based object identification and tracking by autonomous vehicles. In order to estimate the velocity of the tracked object, this algorithm fuses information captured by the vehicle's onboard sensors such as cameras and inertial motion sensors to determine the velocity and position of the object of interest in the world coordinate. However in this multiple sensor fusion based tracking system, the measurements from the same target can arrive out of sequence. This is called the "out-of-sequence" measurement (OOSM) problem. In this paper the 1-step-lag OOSM solution from Bar-Shalom is implemented to solve the problem. The target tracking performance with the OOSM solution is demonstrated through experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信