使用代数几何的有限状态机的字级遍历

Xiaojun Sun, P. Kalla, Florian Enescu
{"title":"使用代数几何的有限状态机的字级遍历","authors":"Xiaojun Sun, P. Kalla, Florian Enescu","doi":"10.1109/HLDVT.2016.7748268","DOIUrl":null,"url":null,"abstract":"Reachability analysis is a tool for formal equivalence and model checking of sequential circuits. Conventional techniques are mostly bit-level, in that the reachable states, transition relations and property predicates are all represented using Boolean variables and functions. The problem suffers from exponential space and time complexities; therefore, some form of abstraction is desirable. This paper introduces a new concept of implicit state enumeration of finite state machines (FSMs) performed at the word-level. Using algebraic geometry, we show that the state-space of a sequential circuit can be encoded, canonically, as the zeros of a word-level polynomial F (S) over the Galois field F2k, where S = {s0, ..., sk-1} is the word-level representation of a k-bit state register. Subsequently, concepts of elimination ideals and Grobner bases can be employed for FSM traversal. The paper describes the complete theory of word-level FSM traversal and demonstrates the feasibility of the approach with experiments over a set of sequential circuit benchmarks.","PeriodicalId":166427,"journal":{"name":"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Word-level traversal of finite state machines using algebraic geometry\",\"authors\":\"Xiaojun Sun, P. Kalla, Florian Enescu\",\"doi\":\"10.1109/HLDVT.2016.7748268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reachability analysis is a tool for formal equivalence and model checking of sequential circuits. Conventional techniques are mostly bit-level, in that the reachable states, transition relations and property predicates are all represented using Boolean variables and functions. The problem suffers from exponential space and time complexities; therefore, some form of abstraction is desirable. This paper introduces a new concept of implicit state enumeration of finite state machines (FSMs) performed at the word-level. Using algebraic geometry, we show that the state-space of a sequential circuit can be encoded, canonically, as the zeros of a word-level polynomial F (S) over the Galois field F2k, where S = {s0, ..., sk-1} is the word-level representation of a k-bit state register. Subsequently, concepts of elimination ideals and Grobner bases can be employed for FSM traversal. The paper describes the complete theory of word-level FSM traversal and demonstrates the feasibility of the approach with experiments over a set of sequential circuit benchmarks.\",\"PeriodicalId\":166427,\"journal\":{\"name\":\"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HLDVT.2016.7748268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2016.7748268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

可达性分析是顺序电路形式等价和模型检验的工具。传统技术主要是位级的,因为可达状态、转换关系和属性谓词都使用布尔变量和函数表示。这个问题受到指数空间和时间复杂性的困扰;因此,需要某种形式的抽象。本文引入了在词级执行的有限状态机隐式状态枚举的新概念。利用代数几何,我们证明了顺序电路的状态空间可以编码为伽罗瓦域F2k上的字级多项式F (S)的零,其中S ={50,…, sk-1}是k位状态寄存器的字级表示。随后,可采用消去理想和Grobner基的概念进行FSM遍历。本文描述了字级FSM遍历的完整理论,并通过一组顺序电路基准的实验证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Word-level traversal of finite state machines using algebraic geometry
Reachability analysis is a tool for formal equivalence and model checking of sequential circuits. Conventional techniques are mostly bit-level, in that the reachable states, transition relations and property predicates are all represented using Boolean variables and functions. The problem suffers from exponential space and time complexities; therefore, some form of abstraction is desirable. This paper introduces a new concept of implicit state enumeration of finite state machines (FSMs) performed at the word-level. Using algebraic geometry, we show that the state-space of a sequential circuit can be encoded, canonically, as the zeros of a word-level polynomial F (S) over the Galois field F2k, where S = {s0, ..., sk-1} is the word-level representation of a k-bit state register. Subsequently, concepts of elimination ideals and Grobner bases can be employed for FSM traversal. The paper describes the complete theory of word-level FSM traversal and demonstrates the feasibility of the approach with experiments over a set of sequential circuit benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信