F. Sampaio, M. Shafique, B. Zatt, S. Bampi, J. Henkel
{"title":"先进视频存储器的节能架构","authors":"F. Sampaio, M. Shafique, B. Zatt, S. Bampi, J. Henkel","doi":"10.1109/ICCAD.2014.7001343","DOIUrl":null,"url":null,"abstract":"An energy-efficient hybrid on-chip video memory architecture (enHyV) is presented that combines private and shared memories using a hybrid design (i.e., SRAM and emerging STT-RAM). The key is to leverage the application-specific properties to efficiently design and manage the enHyV. To increase STT-RAM lifetime, we propose a data management technique that alleviates the bit-toggling write occurrences. An adaptive power management is also proposed for static-energy savings. Experimental results illustrate that enHyV reduces on-chip static memory energy compared to SRAM-only version of enHyV and to state-of-art AMBER hybrid video memory [9] by 66%-75% and 55%-76%, respectively. Furthermore, negligible external memory energy consumption is required for reference frames communication (98% lower than state-of-the-art Level C+ technique [18]). Our data management significantly improves the enHyV STT-RAM lifetime, achieving 0.83 of normalized lifetime (near to the optimal case). Our hybrid memory design and management incur low overhead in terms of latency and dynamic energy.","PeriodicalId":426584,"journal":{"name":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Energy-efficient architecture for advanced video memory\",\"authors\":\"F. Sampaio, M. Shafique, B. Zatt, S. Bampi, J. Henkel\",\"doi\":\"10.1109/ICCAD.2014.7001343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An energy-efficient hybrid on-chip video memory architecture (enHyV) is presented that combines private and shared memories using a hybrid design (i.e., SRAM and emerging STT-RAM). The key is to leverage the application-specific properties to efficiently design and manage the enHyV. To increase STT-RAM lifetime, we propose a data management technique that alleviates the bit-toggling write occurrences. An adaptive power management is also proposed for static-energy savings. Experimental results illustrate that enHyV reduces on-chip static memory energy compared to SRAM-only version of enHyV and to state-of-art AMBER hybrid video memory [9] by 66%-75% and 55%-76%, respectively. Furthermore, negligible external memory energy consumption is required for reference frames communication (98% lower than state-of-the-art Level C+ technique [18]). Our data management significantly improves the enHyV STT-RAM lifetime, achieving 0.83 of normalized lifetime (near to the optimal case). Our hybrid memory design and management incur low overhead in terms of latency and dynamic energy.\",\"PeriodicalId\":426584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2014.7001343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2014.7001343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficient architecture for advanced video memory
An energy-efficient hybrid on-chip video memory architecture (enHyV) is presented that combines private and shared memories using a hybrid design (i.e., SRAM and emerging STT-RAM). The key is to leverage the application-specific properties to efficiently design and manage the enHyV. To increase STT-RAM lifetime, we propose a data management technique that alleviates the bit-toggling write occurrences. An adaptive power management is also proposed for static-energy savings. Experimental results illustrate that enHyV reduces on-chip static memory energy compared to SRAM-only version of enHyV and to state-of-art AMBER hybrid video memory [9] by 66%-75% and 55%-76%, respectively. Furthermore, negligible external memory energy consumption is required for reference frames communication (98% lower than state-of-the-art Level C+ technique [18]). Our data management significantly improves the enHyV STT-RAM lifetime, achieving 0.83 of normalized lifetime (near to the optimal case). Our hybrid memory design and management incur low overhead in terms of latency and dynamic energy.