ARM处理器的正式验证

Vishnu A. Patankar, Alok K. Jain, R. Bryant
{"title":"ARM处理器的正式验证","authors":"Vishnu A. Patankar, Alok K. Jain, R. Bryant","doi":"10.1109/ICVD.1999.745161","DOIUrl":null,"url":null,"abstract":"This paper presents a detailed description of the application of a formal verification methodology to an ARM processor. The processor, a hybrid between the ARM7 and the StrongARM processors, uses features such as a 5-stage instruction pipeline, predicated execution, forwarding logic and multi-cycle instructions. The instruction set of the processor was defined as a set of abstract assertions. An implementation mapping was used to relate the abstract states in these assertions to detailed circuit states in the gate-level implementation of the processor. Symbolic Trajectory Evaluation was used to verify that the circuit fulfills each abstract assertion under the implementation mapping. The verification was done concurrently with the design implementation of the processor. Our verification did uncover 4 bugs that were reported back to the designer.","PeriodicalId":443373,"journal":{"name":"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Formal verification of an ARM processor\",\"authors\":\"Vishnu A. Patankar, Alok K. Jain, R. Bryant\",\"doi\":\"10.1109/ICVD.1999.745161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a detailed description of the application of a formal verification methodology to an ARM processor. The processor, a hybrid between the ARM7 and the StrongARM processors, uses features such as a 5-stage instruction pipeline, predicated execution, forwarding logic and multi-cycle instructions. The instruction set of the processor was defined as a set of abstract assertions. An implementation mapping was used to relate the abstract states in these assertions to detailed circuit states in the gate-level implementation of the processor. Symbolic Trajectory Evaluation was used to verify that the circuit fulfills each abstract assertion under the implementation mapping. The verification was done concurrently with the design implementation of the processor. Our verification did uncover 4 bugs that were reported back to the designer.\",\"PeriodicalId\":443373,\"journal\":{\"name\":\"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVD.1999.745161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVD.1999.745161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本文详细介绍了形式化验证方法在ARM处理器上的应用。该处理器是ARM7和StrongARM处理器的混合体,使用了5阶段指令管道、预测执行、转发逻辑和多周期指令等功能。处理器的指令集被定义为一组抽象断言。实现映射用于将这些断言中的抽象状态与处理器的门级实现中的详细电路状态联系起来。使用符号轨迹评估来验证电路是否满足实现映射下的每个抽象断言。验证与处理器的设计实现同时进行。我们的验证确实发现了4个bug,并反馈给了设计师。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formal verification of an ARM processor
This paper presents a detailed description of the application of a formal verification methodology to an ARM processor. The processor, a hybrid between the ARM7 and the StrongARM processors, uses features such as a 5-stage instruction pipeline, predicated execution, forwarding logic and multi-cycle instructions. The instruction set of the processor was defined as a set of abstract assertions. An implementation mapping was used to relate the abstract states in these assertions to detailed circuit states in the gate-level implementation of the processor. Symbolic Trajectory Evaluation was used to verify that the circuit fulfills each abstract assertion under the implementation mapping. The verification was done concurrently with the design implementation of the processor. Our verification did uncover 4 bugs that were reported back to the designer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信