应用于美国数据的一系列死亡率跳跃模型

Hua Chen
{"title":"应用于美国数据的一系列死亡率跳跃模型","authors":"Hua Chen","doi":"10.2139/ssrn.1911688","DOIUrl":null,"url":null,"abstract":"Mortality models are fundamental to quantify mortality/longevity risks and provide the basis of pricing and reserving. In this article, we consider a family of mortality jump models and propose a new generalized Lee–Carter model with asymmetric double exponential jumps. It is asymmetric in terms of both time periods of impact and frequency/severity profiles between adverse mortality jumps and longevity jumps. It is mathematically tractable and economically intuitive. It degenerates to a transitory exponential jump model when fitting the US mortality data and is the best fit compared with other jump models.","PeriodicalId":151802,"journal":{"name":"ERN: Life Cycle Models (Topic)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Family of Mortality Jump Models Applied to U.S. Data\",\"authors\":\"Hua Chen\",\"doi\":\"10.2139/ssrn.1911688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mortality models are fundamental to quantify mortality/longevity risks and provide the basis of pricing and reserving. In this article, we consider a family of mortality jump models and propose a new generalized Lee–Carter model with asymmetric double exponential jumps. It is asymmetric in terms of both time periods of impact and frequency/severity profiles between adverse mortality jumps and longevity jumps. It is mathematically tractable and economically intuitive. It degenerates to a transitory exponential jump model when fitting the US mortality data and is the best fit compared with other jump models.\",\"PeriodicalId\":151802,\"journal\":{\"name\":\"ERN: Life Cycle Models (Topic)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Life Cycle Models (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1911688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Life Cycle Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1911688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

死亡率模型是量化死亡率/寿命风险的基础,并为定价和保留提供依据。本文考虑一类死亡率跳跃模型,提出了一种新的具有非对称双指数跳跃的广义Lee-Carter模型。在不利死亡率跳跃和寿命跳跃之间的影响时间段和频率/严重程度概况方面,这是不对称的。它在数学上易于处理,在经济上直观。在拟合美国死亡率数据时,它退化为一个短暂的指数跳跃模型,与其他跳跃模型相比,它是最佳的拟合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Family of Mortality Jump Models Applied to U.S. Data
Mortality models are fundamental to quantify mortality/longevity risks and provide the basis of pricing and reserving. In this article, we consider a family of mortality jump models and propose a new generalized Lee–Carter model with asymmetric double exponential jumps. It is asymmetric in terms of both time periods of impact and frequency/severity profiles between adverse mortality jumps and longevity jumps. It is mathematically tractable and economically intuitive. It degenerates to a transitory exponential jump model when fitting the US mortality data and is the best fit compared with other jump models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信