José M. Leitão, J. Germano, N. Roma, R. Chaves, P. Tomás
{"title":"可扩展和高通量的生物传感平台","authors":"José M. Leitão, J. Germano, N. Roma, R. Chaves, P. Tomás","doi":"10.1109/FPL.2013.6645529","DOIUrl":null,"url":null,"abstract":"A novel multi-channel high performance embedded system capable of high throughput biological analysis is proposed in this paper. Despite other integrated lab-on-chip solutions based on magnetoresistive biochips have already been developed, they lack the scalability and computational resources to cope with new biochip designs featuring more than 1000 sensors. A new configurable acquisition and processing architecture is proposed, combining dedicated coprocessors to perform signal filtering and other computational demanding tasks, with a central processor controlling the whole system. The mapping of the architecture into a Zynq SoC demonstrated its ability to support 8 times more sensors, while ensuring a sampling frequency 1000+ times higher than the previous platforms. Furthermore, the Zynq reconfiguration abilities provide a mechanism to adapt the processing and maximize the biological sensitivity.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scalable and high throughput biosensing platform\",\"authors\":\"José M. Leitão, J. Germano, N. Roma, R. Chaves, P. Tomás\",\"doi\":\"10.1109/FPL.2013.6645529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel multi-channel high performance embedded system capable of high throughput biological analysis is proposed in this paper. Despite other integrated lab-on-chip solutions based on magnetoresistive biochips have already been developed, they lack the scalability and computational resources to cope with new biochip designs featuring more than 1000 sensors. A new configurable acquisition and processing architecture is proposed, combining dedicated coprocessors to perform signal filtering and other computational demanding tasks, with a central processor controlling the whole system. The mapping of the architecture into a Zynq SoC demonstrated its ability to support 8 times more sensors, while ensuring a sampling frequency 1000+ times higher than the previous platforms. Furthermore, the Zynq reconfiguration abilities provide a mechanism to adapt the processing and maximize the biological sensitivity.\",\"PeriodicalId\":200435,\"journal\":{\"name\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2013.6645529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel multi-channel high performance embedded system capable of high throughput biological analysis is proposed in this paper. Despite other integrated lab-on-chip solutions based on magnetoresistive biochips have already been developed, they lack the scalability and computational resources to cope with new biochip designs featuring more than 1000 sensors. A new configurable acquisition and processing architecture is proposed, combining dedicated coprocessors to perform signal filtering and other computational demanding tasks, with a central processor controlling the whole system. The mapping of the architecture into a Zynq SoC demonstrated its ability to support 8 times more sensors, while ensuring a sampling frequency 1000+ times higher than the previous platforms. Furthermore, the Zynq reconfiguration abilities provide a mechanism to adapt the processing and maximize the biological sensitivity.