非线性前馈跟踪仪表自适应信号处理算法的综合

V. M. Artyushenko, V. I. Volovach
{"title":"非线性前馈跟踪仪表自适应信号处理算法的综合","authors":"V. M. Artyushenko, V. I. Volovach","doi":"10.1109/DYNAMICS.2018.8601431","DOIUrl":null,"url":null,"abstract":"We considered the issues of synthesis of the algorithms for adaptive nonlinear signal processing using feed-forward blocks of nonlinear transformation under the influence of non-Gaussian noise with unknown density of distribution of instantaneous values or its envelope. It is shown that to plot the adaptive feed-forward blocks of nonlinear transformation, the algorithms for estimating the parameters of linear model of probability density function of noise can be used. This model is presented in the form of a generalized polynomial of decomposition in a series of linearly independent functions, and, also, in the form of nonlinear models, such as generalized Gaussian distribution and abnormally cluttered distribution.","PeriodicalId":394567,"journal":{"name":"2018 Dynamics of Systems, Mechanisms and Machines (Dynamics)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of Algorithms of Adaptive Signal Processing for Tracking Meters Using Nonlinear Blocks with Feed-Forward\",\"authors\":\"V. M. Artyushenko, V. I. Volovach\",\"doi\":\"10.1109/DYNAMICS.2018.8601431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We considered the issues of synthesis of the algorithms for adaptive nonlinear signal processing using feed-forward blocks of nonlinear transformation under the influence of non-Gaussian noise with unknown density of distribution of instantaneous values or its envelope. It is shown that to plot the adaptive feed-forward blocks of nonlinear transformation, the algorithms for estimating the parameters of linear model of probability density function of noise can be used. This model is presented in the form of a generalized polynomial of decomposition in a series of linearly independent functions, and, also, in the form of nonlinear models, such as generalized Gaussian distribution and abnormally cluttered distribution.\",\"PeriodicalId\":394567,\"journal\":{\"name\":\"2018 Dynamics of Systems, Mechanisms and Machines (Dynamics)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Dynamics of Systems, Mechanisms and Machines (Dynamics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DYNAMICS.2018.8601431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Dynamics of Systems, Mechanisms and Machines (Dynamics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DYNAMICS.2018.8601431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了在瞬时值或其包络分布密度未知的非高斯噪声影响下,利用前馈非线性变换块的自适应非线性信号处理算法的综合问题。结果表明,为了绘制非线性变换的自适应前馈块,可以使用估计噪声概率密度函数线性模型参数的算法。该模型可以用分解成一系列线性无关函数的广义多项式的形式来表示,也可以用广义高斯分布和异常杂乱分布等非线性模型来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Algorithms of Adaptive Signal Processing for Tracking Meters Using Nonlinear Blocks with Feed-Forward
We considered the issues of synthesis of the algorithms for adaptive nonlinear signal processing using feed-forward blocks of nonlinear transformation under the influence of non-Gaussian noise with unknown density of distribution of instantaneous values or its envelope. It is shown that to plot the adaptive feed-forward blocks of nonlinear transformation, the algorithms for estimating the parameters of linear model of probability density function of noise can be used. This model is presented in the form of a generalized polynomial of decomposition in a series of linearly independent functions, and, also, in the form of nonlinear models, such as generalized Gaussian distribution and abnormally cluttered distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信