有理数的残数算术

R. T. Gregory
{"title":"有理数的残数算术","authors":"R. T. Gregory","doi":"10.1109/ARITH.1981.6159275","DOIUrl":null,"url":null,"abstract":"A method is described for doing residue arithmetic when the operands are rational numbers. A rational operand a/b is mapped onto the integer |a·b<sup>−1</sup>|<inf>p</inf> and the arithmetic is performed in GF(p). A method is given for taking an integer result and finding its rational equivalent (the one which corresponds to the correct rational result).","PeriodicalId":169426,"journal":{"name":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Residue arithmetic with rational operands\",\"authors\":\"R. T. Gregory\",\"doi\":\"10.1109/ARITH.1981.6159275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method is described for doing residue arithmetic when the operands are rational numbers. A rational operand a/b is mapped onto the integer |a·b<sup>−1</sup>|<inf>p</inf> and the arithmetic is performed in GF(p). A method is given for taking an integer result and finding its rational equivalent (the one which corresponds to the correct rational result).\",\"PeriodicalId\":169426,\"journal\":{\"name\":\"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1981.6159275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1981.6159275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

描述了当操作数为有理数时的残数运算方法。将有理数A /b映射到整数| A·b−1|p上,并在GF(p)中执行算术运算。给出了一种取整数结果并求其有理等价物(即与正确的有理结果相对应的结果)的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residue arithmetic with rational operands
A method is described for doing residue arithmetic when the operands are rational numbers. A rational operand a/b is mapped onto the integer |a·b−1|p and the arithmetic is performed in GF(p). A method is given for taking an integer result and finding its rational equivalent (the one which corresponds to the correct rational result).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信