时间序列预测预测与异常检测方法比较实验研究

Rishik Sharma, Neha R. Singh, S. Birla
{"title":"时间序列预测预测与异常检测方法比较实验研究","authors":"Rishik Sharma, Neha R. Singh, S. Birla","doi":"10.1109/ICECCT52121.2021.9616662","DOIUrl":null,"url":null,"abstract":"Time series forecasting is used to detect some anomaly, that is, any unusual or unrequired events in network traffic, so that it can be removed while using the dataset for further processing. Anomaly detection is very helpful in reducing the operation call. This paper compares different models for detecting anomaly in computer networks using time series forecasting methods with reduced error rates.","PeriodicalId":155129,"journal":{"name":"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Experimental Study for Comparing Different Method for Time Series Forecasting Prediction & Anomaly Detection\",\"authors\":\"Rishik Sharma, Neha R. Singh, S. Birla\",\"doi\":\"10.1109/ICECCT52121.2021.9616662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series forecasting is used to detect some anomaly, that is, any unusual or unrequired events in network traffic, so that it can be removed while using the dataset for further processing. Anomaly detection is very helpful in reducing the operation call. This paper compares different models for detecting anomaly in computer networks using time series forecasting methods with reduced error rates.\",\"PeriodicalId\":155129,\"journal\":{\"name\":\"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCT52121.2021.9616662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT52121.2021.9616662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

时间序列预测用于检测一些异常,即网络流量中任何不寻常或不需要的事件,以便在使用数据集进行进一步处理时将其删除。异常检测有助于减少操作调用。本文比较了利用时间序列预测方法检测计算机网络异常的不同模型,这些模型的错误率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Study for Comparing Different Method for Time Series Forecasting Prediction & Anomaly Detection
Time series forecasting is used to detect some anomaly, that is, any unusual or unrequired events in network traffic, so that it can be removed while using the dataset for further processing. Anomaly detection is very helpful in reducing the operation call. This paper compares different models for detecting anomaly in computer networks using time series forecasting methods with reduced error rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信