高压网络中基于主动交换混合u单元的高效模块化多电平变换器

A. Darwish
{"title":"高压网络中基于主动交换混合u单元的高效模块化多电平变换器","authors":"A. Darwish","doi":"10.1049/CP.2019.0094","DOIUrl":null,"url":null,"abstract":"High-voltage DC (HVDC) converter topologies have been more desirable in the off-shore wind energy applications to increase the efficiency and reduce the losses. In this context, the paper presents a modified structure for modular multilevel voltage source converter (VSC) topology where the conduction and switching losses can be significantly reduced. As the conduction losses of the semiconductor devices affect the total efficiency of such systems, replacing part of the Insulated Gate Bipolar Transistor (IGBT) devices with thyristors in the conduction path of the proposed topology can reduce the total losses in the normal operation. Thus, both IGBTs and thyristors are implemented in a hybrid configuration. In this configuration, the IGBT devices are responsible for voltage/current transitions between the positive and negative parts of the waveforms while the thyristor devices are responsible for conducting the currents in the other constant polarity regions. MATLAB simulations and scaled-down experiments show that the modified structure can reduce the total losses of the HVDC converter significantly.","PeriodicalId":362400,"journal":{"name":"15th IET International Conference on AC and DC Power Transmission (ACDC 2019)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient modular multilevel converter based on active-forcedcommutated hybrid packed u-cells for HV networks\",\"authors\":\"A. Darwish\",\"doi\":\"10.1049/CP.2019.0094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-voltage DC (HVDC) converter topologies have been more desirable in the off-shore wind energy applications to increase the efficiency and reduce the losses. In this context, the paper presents a modified structure for modular multilevel voltage source converter (VSC) topology where the conduction and switching losses can be significantly reduced. As the conduction losses of the semiconductor devices affect the total efficiency of such systems, replacing part of the Insulated Gate Bipolar Transistor (IGBT) devices with thyristors in the conduction path of the proposed topology can reduce the total losses in the normal operation. Thus, both IGBTs and thyristors are implemented in a hybrid configuration. In this configuration, the IGBT devices are responsible for voltage/current transitions between the positive and negative parts of the waveforms while the thyristor devices are responsible for conducting the currents in the other constant polarity regions. MATLAB simulations and scaled-down experiments show that the modified structure can reduce the total losses of the HVDC converter significantly.\",\"PeriodicalId\":362400,\"journal\":{\"name\":\"15th IET International Conference on AC and DC Power Transmission (ACDC 2019)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th IET International Conference on AC and DC Power Transmission (ACDC 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/CP.2019.0094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th IET International Conference on AC and DC Power Transmission (ACDC 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/CP.2019.0094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

高压直流(HVDC)变换器拓扑结构在海上风能应用中更受欢迎,以提高效率和减少损失。在这种情况下,本文提出了一种改进的模块化多电平电压源变换器(VSC)拓扑结构,可以显着降低导通和开关损耗。由于半导体器件的导通损耗会影响系统的总效率,因此在所提出的拓扑结构的导通路径中用晶闸管替换部分绝缘栅双极晶体管(IGBT)器件可以降低正常工作时的总损耗。因此,igbt和晶闸管都以混合配置实现。在这种配置中,IGBT器件负责波形的正负部分之间的电压/电流转换,而晶闸管器件负责在其他恒定极性区域传导电流。MATLAB仿真和按比例缩小的实验表明,改进后的结构能显著降低直流变流器的总损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient modular multilevel converter based on active-forcedcommutated hybrid packed u-cells for HV networks
High-voltage DC (HVDC) converter topologies have been more desirable in the off-shore wind energy applications to increase the efficiency and reduce the losses. In this context, the paper presents a modified structure for modular multilevel voltage source converter (VSC) topology where the conduction and switching losses can be significantly reduced. As the conduction losses of the semiconductor devices affect the total efficiency of such systems, replacing part of the Insulated Gate Bipolar Transistor (IGBT) devices with thyristors in the conduction path of the proposed topology can reduce the total losses in the normal operation. Thus, both IGBTs and thyristors are implemented in a hybrid configuration. In this configuration, the IGBT devices are responsible for voltage/current transitions between the positive and negative parts of the waveforms while the thyristor devices are responsible for conducting the currents in the other constant polarity regions. MATLAB simulations and scaled-down experiments show that the modified structure can reduce the total losses of the HVDC converter significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信