基于SIFT关键点直方图的树种识别

Shuaiqi Hu, Ke Li, Xudong Bao
{"title":"基于SIFT关键点直方图的树种识别","authors":"Shuaiqi Hu, Ke Li, Xudong Bao","doi":"10.1109/CISP.2015.7407968","DOIUrl":null,"url":null,"abstract":"Traditionally, only experts who are equipped with professional knowledge and rich experience are able to recognize different species of wood. Applying image processing techniques for wood species recognition can not only reduce the expense to train qualified identifiers, but also increase the recognition accuracy. In this paper, a wood species recognition technique base on Scale Invariant Feature Transformation (SIFT) keypoint histogram is proposed. We use first the SIFT algorithm to extract keypoints from wood cross section images, and then k-means and k-means++ algorithms are used for clustering. Using the clustering results, an SIFT keypoints histogram is calculated for each wood image. Furthermore, several classification models, including Artificial Neural Networks (ANN), Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) are used to verify the performance of the method. Finally, through comparing with other prevalent wood recognition methods such as GLCM and LBP, results show that our scheme achieves higher accuracy.","PeriodicalId":167631,"journal":{"name":"2015 8th International Congress on Image and Signal Processing (CISP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Wood species recognition based on SIFT keypoint histogram\",\"authors\":\"Shuaiqi Hu, Ke Li, Xudong Bao\",\"doi\":\"10.1109/CISP.2015.7407968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, only experts who are equipped with professional knowledge and rich experience are able to recognize different species of wood. Applying image processing techniques for wood species recognition can not only reduce the expense to train qualified identifiers, but also increase the recognition accuracy. In this paper, a wood species recognition technique base on Scale Invariant Feature Transformation (SIFT) keypoint histogram is proposed. We use first the SIFT algorithm to extract keypoints from wood cross section images, and then k-means and k-means++ algorithms are used for clustering. Using the clustering results, an SIFT keypoints histogram is calculated for each wood image. Furthermore, several classification models, including Artificial Neural Networks (ANN), Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) are used to verify the performance of the method. Finally, through comparing with other prevalent wood recognition methods such as GLCM and LBP, results show that our scheme achieves higher accuracy.\",\"PeriodicalId\":167631,\"journal\":{\"name\":\"2015 8th International Congress on Image and Signal Processing (CISP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 8th International Congress on Image and Signal Processing (CISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP.2015.7407968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2015.7407968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

传统上,只有具备专业知识和丰富经验的专家才能识别不同种类的木材。将图像处理技术应用于树种识别,不仅可以减少训练合格标识符的费用,而且可以提高识别精度。提出了一种基于尺度不变特征变换(SIFT)关键点直方图的树种识别方法。首先使用SIFT算法从木材截面图像中提取关键点,然后使用k-means和k-means++算法进行聚类。利用聚类结果,计算每个木材图像的SIFT关键点直方图。此外,采用人工神经网络(ANN)、支持向量机(SVM)和k近邻(KNN)等分类模型验证了该方法的性能。最后,通过与其他常用的木材识别方法(GLCM和LBP)进行比较,结果表明我们的方法具有更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wood species recognition based on SIFT keypoint histogram
Traditionally, only experts who are equipped with professional knowledge and rich experience are able to recognize different species of wood. Applying image processing techniques for wood species recognition can not only reduce the expense to train qualified identifiers, but also increase the recognition accuracy. In this paper, a wood species recognition technique base on Scale Invariant Feature Transformation (SIFT) keypoint histogram is proposed. We use first the SIFT algorithm to extract keypoints from wood cross section images, and then k-means and k-means++ algorithms are used for clustering. Using the clustering results, an SIFT keypoints histogram is calculated for each wood image. Furthermore, several classification models, including Artificial Neural Networks (ANN), Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) are used to verify the performance of the method. Finally, through comparing with other prevalent wood recognition methods such as GLCM and LBP, results show that our scheme achieves higher accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信