基于空间约束的人体运动最大似然估计

Wanyi Li, Jifeng Sun, Xin Zhang, Yuan-Chun Wu
{"title":"基于空间约束的人体运动最大似然估计","authors":"Wanyi Li, Jifeng Sun, Xin Zhang, Yuan-Chun Wu","doi":"10.1109/ICSPCC.2013.6663910","DOIUrl":null,"url":null,"abstract":"A new method of spatial constraints-based maximum likelihood estimation (SC-based MLE) is proposed to process latent variables data of incomplete human motions cycle, and improve the GPDM learning and estimation in this paper, which can make the GPDM learn the samples of incomplete human motions cycle to estimate the new human motions. The proposed method has the GPDM learning less depend on training samples of the complete human motions cycle, and save the training samples. We verify the validity and efficiency of the proposed method, through the experiments of human motions estimation using the samples of incomplete and complete human motions cycle for training respectively.","PeriodicalId":124509,"journal":{"name":"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spatial constraints-based maximum likelihood estimation for human motions\",\"authors\":\"Wanyi Li, Jifeng Sun, Xin Zhang, Yuan-Chun Wu\",\"doi\":\"10.1109/ICSPCC.2013.6663910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method of spatial constraints-based maximum likelihood estimation (SC-based MLE) is proposed to process latent variables data of incomplete human motions cycle, and improve the GPDM learning and estimation in this paper, which can make the GPDM learn the samples of incomplete human motions cycle to estimate the new human motions. The proposed method has the GPDM learning less depend on training samples of the complete human motions cycle, and save the training samples. We verify the validity and efficiency of the proposed method, through the experiments of human motions estimation using the samples of incomplete and complete human motions cycle for training respectively.\",\"PeriodicalId\":124509,\"journal\":{\"name\":\"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPCC.2013.6663910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC.2013.6663910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种新的基于空间约束的最大似然估计(SC-based MLE)方法来处理不完整人体运动周期的潜在变量数据,改进了GPDM的学习和估计,使GPDM能够学习不完整人体运动周期的样本来估计新的人体运动。该方法减少了GPDM学习对人体完整运动周期训练样本的依赖,并节省了训练样本。通过分别使用不完整和完整的人体运动周期样本进行训练的人体运动估计实验,验证了所提方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial constraints-based maximum likelihood estimation for human motions
A new method of spatial constraints-based maximum likelihood estimation (SC-based MLE) is proposed to process latent variables data of incomplete human motions cycle, and improve the GPDM learning and estimation in this paper, which can make the GPDM learn the samples of incomplete human motions cycle to estimate the new human motions. The proposed method has the GPDM learning less depend on training samples of the complete human motions cycle, and save the training samples. We verify the validity and efficiency of the proposed method, through the experiments of human motions estimation using the samples of incomplete and complete human motions cycle for training respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信