异构无人机群的最优控制技术

Sami Mian, J. Hill, Zhihong Mao
{"title":"异构无人机群的最优控制技术","authors":"Sami Mian, J. Hill, Zhihong Mao","doi":"10.1109/DASC50938.2020.9256688","DOIUrl":null,"url":null,"abstract":"Heterogeneous Unmanned Aerial Vehicle (UAV) swarms offer unique opportunities for solving multi-robot missions, but also introduce novel implementation challenges. In our study, we develop Heterogeneous Decentralized Receding Horizon Control (HD-RHC) for swarm management in search & rescue missions. This new technique builds upon existing multiagent UAV work, but adds the capacity to manage a fleet of heterogeneous, diverse robot platforms that are equipped for different mission capabilities. Through high-fidelity simulation (AirSim), we derive an optimal controller, develop a method to find optimal weights for a specific mission focus, and provide a path to physical system validation. We analyze the efficiency and performance of HD-RHC controller, and discuss different ways this new method can be integrated into mission-management scenarios.","PeriodicalId":112045,"journal":{"name":"2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Control Techniques for Heterogeneous UAV Swarms\",\"authors\":\"Sami Mian, J. Hill, Zhihong Mao\",\"doi\":\"10.1109/DASC50938.2020.9256688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous Unmanned Aerial Vehicle (UAV) swarms offer unique opportunities for solving multi-robot missions, but also introduce novel implementation challenges. In our study, we develop Heterogeneous Decentralized Receding Horizon Control (HD-RHC) for swarm management in search & rescue missions. This new technique builds upon existing multiagent UAV work, but adds the capacity to manage a fleet of heterogeneous, diverse robot platforms that are equipped for different mission capabilities. Through high-fidelity simulation (AirSim), we derive an optimal controller, develop a method to find optimal weights for a specific mission focus, and provide a path to physical system validation. We analyze the efficiency and performance of HD-RHC controller, and discuss different ways this new method can be integrated into mission-management scenarios.\",\"PeriodicalId\":112045,\"journal\":{\"name\":\"2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC50938.2020.9256688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC50938.2020.9256688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

异构无人机(UAV)群为解决多机器人任务提供了独特的机会,但也带来了新的实现挑战。在本研究中,我们开发了异构分散式后退地平线控制(HD-RHC),用于搜救任务中的群体管理。这种新技术建立在现有多智能体无人机工作的基础上,但增加了管理异构、多样化机器人平台舰队的能力,这些平台配备了不同的任务能力。通过高保真仿真(AirSim),我们推导了一个最优控制器,开发了一种针对特定任务焦点找到最优权重的方法,并提供了物理系统验证的路径。我们分析了HD-RHC控制器的效率和性能,并讨论了将这种新方法集成到任务管理场景中的不同方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Control Techniques for Heterogeneous UAV Swarms
Heterogeneous Unmanned Aerial Vehicle (UAV) swarms offer unique opportunities for solving multi-robot missions, but also introduce novel implementation challenges. In our study, we develop Heterogeneous Decentralized Receding Horizon Control (HD-RHC) for swarm management in search & rescue missions. This new technique builds upon existing multiagent UAV work, but adds the capacity to manage a fleet of heterogeneous, diverse robot platforms that are equipped for different mission capabilities. Through high-fidelity simulation (AirSim), we derive an optimal controller, develop a method to find optimal weights for a specific mission focus, and provide a path to physical system validation. We analyze the efficiency and performance of HD-RHC controller, and discuss different ways this new method can be integrated into mission-management scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信