{"title":"栅极氧化物击穿分析和优化的可扩展方法","authors":"Jian-wei Fang, S. Sapatnekar","doi":"10.1109/ISQED.2010.5450507","DOIUrl":null,"url":null,"abstract":"In this paper we first develop an analytic closed-form model for the failure probability (FP) of a large digital circuit due to gate oxide breakdown. Our approach accounts for the fact that not every breakdown leads to circuit failure, and shows a 6–11× relaxation of the predicted lifetime with respect to the ultra-pessimistic area-scaling method. Next, we develop a posynomial-based optimization approach to perform gate sizing for oxide reliability in addition to timing and area.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Scalable methods for the analysis and optimization of gate oxide breakdown\",\"authors\":\"Jian-wei Fang, S. Sapatnekar\",\"doi\":\"10.1109/ISQED.2010.5450507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we first develop an analytic closed-form model for the failure probability (FP) of a large digital circuit due to gate oxide breakdown. Our approach accounts for the fact that not every breakdown leads to circuit failure, and shows a 6–11× relaxation of the predicted lifetime with respect to the ultra-pessimistic area-scaling method. Next, we develop a posynomial-based optimization approach to perform gate sizing for oxide reliability in addition to timing and area.\",\"PeriodicalId\":369046,\"journal\":{\"name\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2010.5450507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable methods for the analysis and optimization of gate oxide breakdown
In this paper we first develop an analytic closed-form model for the failure probability (FP) of a large digital circuit due to gate oxide breakdown. Our approach accounts for the fact that not every breakdown leads to circuit failure, and shows a 6–11× relaxation of the predicted lifetime with respect to the ultra-pessimistic area-scaling method. Next, we develop a posynomial-based optimization approach to perform gate sizing for oxide reliability in addition to timing and area.