塞瓦斯托波尔湾季节水动力状态模拟及其生态系统自净能力评价

Е. Sovga, I. Mezentseva, T. Khmara
{"title":"塞瓦斯托波尔湾季节水动力状态模拟及其生态系统自净能力评价","authors":"Е. Sovga, I. Mezentseva, T. Khmara","doi":"10.59887/fpg/92ge-ahz6-n2pt","DOIUrl":null,"url":null,"abstract":"The numerical experiments were carried out to assess the hydrodynamic regime of the eastern part of the Sevastopol Bay, subject to the Chernaya River runoff (high- and low-water periods) and the Yuzhnaya Bay, subject to the technogenic load using the hydrothermodynamic block of the numerical three-dimensional unsteady model MECCA (Model for Estuarine and Coastal Circulation Assessment).The simulated hydrodynamic parameters of the selected parts of the Sevastopol Bay were used to analyze the self-purification capacity of their water bodies by calculating the assimilation capacity for inorganic phosphorus. Phosphates suggested as a priority pollutant in municipal and storm runoffs in the water area of the bay and a determining factor of its in the bay eutrophication. At the same time, to neutralize the differences in the water volumes of the studied water areas when calculating the self-purification ability, estimates of the specific assimilation capacity of their ecosystems were obtained.According to the simulations for the eastern apex part of the bay during high-water period, the water circulation in the surface layer contributes to the spread of pollutants throughout the entire water area of the bay. During the low-water period in the eastern part of the bay, currents prevail, directed towards the Chernaya River mouth in the surface and in the bottom water layer both in the northwestern and western wind directions. It contributes to pollutant accumulation in this part of the bay, thus reducing ability to self-purification.Possible reasons for the low self-purification capacity of the ecosystem of the eastern part of the Sevastopol Bay with respect to inorganic phosphorus are analyzed, which are associated both with the volumes of incoming Chernaya River waters during winter high- and summer low-water periods, as well as with the features of the morphometric structure of the water area bottom.For the Yuzhnaya Bay water area, the hydrodynamic regime is defined by a difficult water exchange with the main water area. Ventilation of the waters of the Yuzhnaya Bay is mainly determined by the wind regime, as a result of which the waters are either trapped in the bay or carried out of it, which undoubtedly affects the self-purification capacity of its ecosystem.","PeriodicalId":218146,"journal":{"name":"Fundamental and Applied Hydrophysics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Seasonal Hydrodynamic Regime in the Sevastopol Bay and of Assessment of the Self-Purification Capacity of its Ecosystem\",\"authors\":\"Е. Sovga, I. Mezentseva, T. Khmara\",\"doi\":\"10.59887/fpg/92ge-ahz6-n2pt\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical experiments were carried out to assess the hydrodynamic regime of the eastern part of the Sevastopol Bay, subject to the Chernaya River runoff (high- and low-water periods) and the Yuzhnaya Bay, subject to the technogenic load using the hydrothermodynamic block of the numerical three-dimensional unsteady model MECCA (Model for Estuarine and Coastal Circulation Assessment).The simulated hydrodynamic parameters of the selected parts of the Sevastopol Bay were used to analyze the self-purification capacity of their water bodies by calculating the assimilation capacity for inorganic phosphorus. Phosphates suggested as a priority pollutant in municipal and storm runoffs in the water area of the bay and a determining factor of its in the bay eutrophication. At the same time, to neutralize the differences in the water volumes of the studied water areas when calculating the self-purification ability, estimates of the specific assimilation capacity of their ecosystems were obtained.According to the simulations for the eastern apex part of the bay during high-water period, the water circulation in the surface layer contributes to the spread of pollutants throughout the entire water area of the bay. During the low-water period in the eastern part of the bay, currents prevail, directed towards the Chernaya River mouth in the surface and in the bottom water layer both in the northwestern and western wind directions. It contributes to pollutant accumulation in this part of the bay, thus reducing ability to self-purification.Possible reasons for the low self-purification capacity of the ecosystem of the eastern part of the Sevastopol Bay with respect to inorganic phosphorus are analyzed, which are associated both with the volumes of incoming Chernaya River waters during winter high- and summer low-water periods, as well as with the features of the morphometric structure of the water area bottom.For the Yuzhnaya Bay water area, the hydrodynamic regime is defined by a difficult water exchange with the main water area. Ventilation of the waters of the Yuzhnaya Bay is mainly determined by the wind regime, as a result of which the waters are either trapped in the bay or carried out of it, which undoubtedly affects the self-purification capacity of its ecosystem.\",\"PeriodicalId\":218146,\"journal\":{\"name\":\"Fundamental and Applied Hydrophysics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental and Applied Hydrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59887/fpg/92ge-ahz6-n2pt\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental and Applied Hydrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59887/fpg/92ge-ahz6-n2pt","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用三维非定常数值模型MECCA (model for河口和海岸环流评估模型)的水动力块,对塞瓦斯托波尔湾东部受切尔纳亚河径流(高、低潮期)和Yuzhnaya湾受技术负荷的水动力状态进行了数值模拟。利用塞瓦斯托波尔湾选定部分水域的模拟水动力参数,通过计算其对无机磷的同化能力来分析其水体的自净能力。磷酸盐是海湾水域城市径流和暴雨径流的优先污染物,是海湾富营养化的决定因素。同时,为了消除研究水域在计算自净能力时水量的差异,对其生态系统的比同化能力进行了估算。对高潮期海湾东部顶点部分的模拟表明,表层水循环对污染物在整个海湾水域的扩散起着重要作用。在海湾东部的低潮期,水流盛行,在西北和西风方向的表面和底部水层都朝向切尔纳亚河口。它导致污染物在海湾的这一部分积聚,从而降低了自净能力。分析了塞瓦斯托波尔湾东部生态系统对无机磷的自净能力较低的可能原因,这与冬季高水位和夏季低水位期间切尔纳亚河来水的体积以及水域底部形态结构的特征有关。对于尤日纳亚湾水域,水动力状态是由与主水域的水交换困难所定义的。尤日纳亚湾水域的通风量主要由风况决定,因此海水要么被困在海湾里,要么被带出海湾,这无疑影响了其生态系统的自净能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Seasonal Hydrodynamic Regime in the Sevastopol Bay and of Assessment of the Self-Purification Capacity of its Ecosystem
The numerical experiments were carried out to assess the hydrodynamic regime of the eastern part of the Sevastopol Bay, subject to the Chernaya River runoff (high- and low-water periods) and the Yuzhnaya Bay, subject to the technogenic load using the hydrothermodynamic block of the numerical three-dimensional unsteady model MECCA (Model for Estuarine and Coastal Circulation Assessment).The simulated hydrodynamic parameters of the selected parts of the Sevastopol Bay were used to analyze the self-purification capacity of their water bodies by calculating the assimilation capacity for inorganic phosphorus. Phosphates suggested as a priority pollutant in municipal and storm runoffs in the water area of the bay and a determining factor of its in the bay eutrophication. At the same time, to neutralize the differences in the water volumes of the studied water areas when calculating the self-purification ability, estimates of the specific assimilation capacity of their ecosystems were obtained.According to the simulations for the eastern apex part of the bay during high-water period, the water circulation in the surface layer contributes to the spread of pollutants throughout the entire water area of the bay. During the low-water period in the eastern part of the bay, currents prevail, directed towards the Chernaya River mouth in the surface and in the bottom water layer both in the northwestern and western wind directions. It contributes to pollutant accumulation in this part of the bay, thus reducing ability to self-purification.Possible reasons for the low self-purification capacity of the ecosystem of the eastern part of the Sevastopol Bay with respect to inorganic phosphorus are analyzed, which are associated both with the volumes of incoming Chernaya River waters during winter high- and summer low-water periods, as well as with the features of the morphometric structure of the water area bottom.For the Yuzhnaya Bay water area, the hydrodynamic regime is defined by a difficult water exchange with the main water area. Ventilation of the waters of the Yuzhnaya Bay is mainly determined by the wind regime, as a result of which the waters are either trapped in the bay or carried out of it, which undoubtedly affects the self-purification capacity of its ecosystem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信