D. Tichenor, A. Ray-Chaudhuri, G. Kubiak, K. Nguyen, S. Haney, K. Berger, R. Nissen, Y. Perras, P. Jin, L. I. Weingarten, P. Keifer, R. Stulen, R. Shagam, W. Sweatt, T. G. Smith, O. Wood, A. MacDowell, J. Bjorkholm, T. Jewell, F. Zernike, B. Fix, H. Hauschildt
{"title":"EUV成像系统的发展进展","authors":"D. Tichenor, A. Ray-Chaudhuri, G. Kubiak, K. Nguyen, S. Haney, K. Berger, R. Nissen, Y. Perras, P. Jin, L. I. Weingarten, P. Keifer, R. Stulen, R. Shagam, W. Sweatt, T. G. Smith, O. Wood, A. MacDowell, J. Bjorkholm, T. Jewell, F. Zernike, B. Fix, H. Hauschildt","doi":"10.1364/eul.1996.eww2","DOIUrl":null,"url":null,"abstract":"An extreme ultraviolet (EUV) ring-field camera, comprised of 3 aspheric mirrors, has been fabricated and evaluated using visible light. The wavefront error (WFE) within a 1 mm × 25 mm field of view is 2.5 nm RMS. In a 10x Schwarzschild optic, having a 0.4 mm diameter field of view, an optically measured WFE of 1 nm RMS has been achieved. EUV images recorded in resist using the Schwarzschild camera are shown. The integration of this camera into a laboratory tool for device fabrication experiments is described.","PeriodicalId":201185,"journal":{"name":"Extreme Ultraviolet Lithography (TOPS)","volume":"36 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Progress in the Development of EUV Imaging Systems\",\"authors\":\"D. Tichenor, A. Ray-Chaudhuri, G. Kubiak, K. Nguyen, S. Haney, K. Berger, R. Nissen, Y. Perras, P. Jin, L. I. Weingarten, P. Keifer, R. Stulen, R. Shagam, W. Sweatt, T. G. Smith, O. Wood, A. MacDowell, J. Bjorkholm, T. Jewell, F. Zernike, B. Fix, H. Hauschildt\",\"doi\":\"10.1364/eul.1996.eww2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extreme ultraviolet (EUV) ring-field camera, comprised of 3 aspheric mirrors, has been fabricated and evaluated using visible light. The wavefront error (WFE) within a 1 mm × 25 mm field of view is 2.5 nm RMS. In a 10x Schwarzschild optic, having a 0.4 mm diameter field of view, an optically measured WFE of 1 nm RMS has been achieved. EUV images recorded in resist using the Schwarzschild camera are shown. The integration of this camera into a laboratory tool for device fabrication experiments is described.\",\"PeriodicalId\":201185,\"journal\":{\"name\":\"Extreme Ultraviolet Lithography (TOPS)\",\"volume\":\"36 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Ultraviolet Lithography (TOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/eul.1996.eww2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Ultraviolet Lithography (TOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/eul.1996.eww2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
制作了一种由3个非球面反射镜组成的极紫外环场相机,并利用可见光对其进行了评价。在1 mm × 25 mm视场范围内,波前误差(WFE)的RMS为2.5 nm。在一个10倍史瓦西光学,具有0.4毫米直径的视野,一个光学测量的WFE的RMS为1纳米已经实现。用史瓦西照相机在抗蚀剂中记录的EUV图像显示。描述了将该相机集成到用于器件制造实验的实验室工具中。
Progress in the Development of EUV Imaging Systems
An extreme ultraviolet (EUV) ring-field camera, comprised of 3 aspheric mirrors, has been fabricated and evaluated using visible light. The wavefront error (WFE) within a 1 mm × 25 mm field of view is 2.5 nm RMS. In a 10x Schwarzschild optic, having a 0.4 mm diameter field of view, an optically measured WFE of 1 nm RMS has been achieved. EUV images recorded in resist using the Schwarzschild camera are shown. The integration of this camera into a laboratory tool for device fabrication experiments is described.