基于汽车集成测试框架的汽车心电测量验证方法

Johannes Schneider, C. Köllner, S. Heuer
{"title":"基于汽车集成测试框架的汽车心电测量验证方法","authors":"Johannes Schneider, C. Köllner, S. Heuer","doi":"10.1109/IVS.2012.6232289","DOIUrl":null,"url":null,"abstract":"Development and integration of physiological sensors into automotive applications is gaining importance. Assistance systems which possess knowledge about the driver's cognitive state could increase road safety. In this paper we present a flexible framework that enables the development, evaluation and verification of sensors and algorithms for automotive applications using physiological signals under realistic driving conditions. We have integrated a custom capacitive ECG measurement system into a test car and validated its performance in real world driving tests. During first test runs, the capacitive system achieved a sensitivity of up to 95.5% and a precision rate of up to 92.6%. Our system also records synchronized vehicle dynamics. We discuss the road test measurements which suggest that the driving situation highly impacts the quality of ECG signal. Therefore, information on driving dynamics could be used to improve the precision rate of future capacitive ECG measurement.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"An approach to automotive ECG measurement validation using a car-integrated test framework\",\"authors\":\"Johannes Schneider, C. Köllner, S. Heuer\",\"doi\":\"10.1109/IVS.2012.6232289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development and integration of physiological sensors into automotive applications is gaining importance. Assistance systems which possess knowledge about the driver's cognitive state could increase road safety. In this paper we present a flexible framework that enables the development, evaluation and verification of sensors and algorithms for automotive applications using physiological signals under realistic driving conditions. We have integrated a custom capacitive ECG measurement system into a test car and validated its performance in real world driving tests. During first test runs, the capacitive system achieved a sensitivity of up to 95.5% and a precision rate of up to 92.6%. Our system also records synchronized vehicle dynamics. We discuss the road test measurements which suggest that the driving situation highly impacts the quality of ECG signal. Therefore, information on driving dynamics could be used to improve the precision rate of future capacitive ECG measurement.\",\"PeriodicalId\":402389,\"journal\":{\"name\":\"2012 IEEE Intelligent Vehicles Symposium\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2012.6232289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

将生理传感器开发和集成到汽车应用中变得越来越重要。掌握驾驶员认知状态的辅助系统可以提高道路安全。在本文中,我们提出了一个灵活的框架,可以在现实驾驶条件下使用生理信号开发,评估和验证用于汽车应用的传感器和算法。我们将定制的电容式心电测量系统集成到测试车中,并在实际驾驶测试中验证了其性能。在第一次测试中,电容系统的灵敏度高达95.5%,精度高达92.6%。我们的系统还记录同步的车辆动态。我们讨论了道路测试结果,表明驾驶情况对心电信号质量有很大影响。因此,利用驱动动态信息可以提高未来电容性心电测量的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to automotive ECG measurement validation using a car-integrated test framework
Development and integration of physiological sensors into automotive applications is gaining importance. Assistance systems which possess knowledge about the driver's cognitive state could increase road safety. In this paper we present a flexible framework that enables the development, evaluation and verification of sensors and algorithms for automotive applications using physiological signals under realistic driving conditions. We have integrated a custom capacitive ECG measurement system into a test car and validated its performance in real world driving tests. During first test runs, the capacitive system achieved a sensitivity of up to 95.5% and a precision rate of up to 92.6%. Our system also records synchronized vehicle dynamics. We discuss the road test measurements which suggest that the driving situation highly impacts the quality of ECG signal. Therefore, information on driving dynamics could be used to improve the precision rate of future capacitive ECG measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信