迈向最优逼近:NAS在通用逼近计算中的应用

Weiwei Chen, Ying Wang, Shuang Yang, Chen Liu, Lei Zhang
{"title":"迈向最优逼近:NAS在通用逼近计算中的应用","authors":"Weiwei Chen, Ying Wang, Shuang Yang, Chen Liu, Lei Zhang","doi":"10.23919/DATE48585.2020.9116250","DOIUrl":null,"url":null,"abstract":"The design of neural network architecture for code approximation involves a large number of hyper-parameters to explore, it is a non-trivial task to find an neural-based approximate computing solution that meets the demand of application-specified accuracy and Quality of Service (QoS). Prior works do not address the problem of ‘optimal’ network architectures design in program approximation, which depends on the user-specified constraints, the complexity of dataset and the hardware configuration. In this paper, we apply Neural Architecture Search (NAS) for searching and selecting the neural approximate computing and provide an automatic framework that tries to generate the best-effort approximation result while satisfying the user-specified QoS/accuracy constraints. Compared with previous method, this work achieves more than 1.43x speedup and 1.74x energy reduction on average when applied to the AxBench benchmarks.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Best-effort Approximation: Applying NAS to General-purpose Approximate Computing\",\"authors\":\"Weiwei Chen, Ying Wang, Shuang Yang, Chen Liu, Lei Zhang\",\"doi\":\"10.23919/DATE48585.2020.9116250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of neural network architecture for code approximation involves a large number of hyper-parameters to explore, it is a non-trivial task to find an neural-based approximate computing solution that meets the demand of application-specified accuracy and Quality of Service (QoS). Prior works do not address the problem of ‘optimal’ network architectures design in program approximation, which depends on the user-specified constraints, the complexity of dataset and the hardware configuration. In this paper, we apply Neural Architecture Search (NAS) for searching and selecting the neural approximate computing and provide an automatic framework that tries to generate the best-effort approximation result while satisfying the user-specified QoS/accuracy constraints. Compared with previous method, this work achieves more than 1.43x speedup and 1.74x energy reduction on average when applied to the AxBench benchmarks.\",\"PeriodicalId\":289525,\"journal\":{\"name\":\"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE48585.2020.9116250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

代码逼近神经网络体系结构的设计涉及到大量的超参数探索,如何找到一种满足应用指定精度和服务质量(QoS)要求的基于神经网络的近似计算解是一项非常重要的任务。先前的工作没有解决程序近似中“最优”网络架构设计的问题,这取决于用户指定的约束、数据集的复杂性和硬件配置。在本文中,我们应用神经架构搜索(NAS)来搜索和选择神经近似计算,并提供一个自动框架,在满足用户指定的QoS/精度约束的情况下,尝试生成最佳努力的近似结果。与以前的方法相比,该工作在AxBench基准测试中平均实现了1.43倍以上的加速和1.74倍以上的能耗降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Best-effort Approximation: Applying NAS to General-purpose Approximate Computing
The design of neural network architecture for code approximation involves a large number of hyper-parameters to explore, it is a non-trivial task to find an neural-based approximate computing solution that meets the demand of application-specified accuracy and Quality of Service (QoS). Prior works do not address the problem of ‘optimal’ network architectures design in program approximation, which depends on the user-specified constraints, the complexity of dataset and the hardware configuration. In this paper, we apply Neural Architecture Search (NAS) for searching and selecting the neural approximate computing and provide an automatic framework that tries to generate the best-effort approximation result while satisfying the user-specified QoS/accuracy constraints. Compared with previous method, this work achieves more than 1.43x speedup and 1.74x energy reduction on average when applied to the AxBench benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信