基于径向基函数神经网络的太阳辐照静态和动态变化快速收敛MPPT控制器

Chepuri Venkateswararao, K. A. Naik
{"title":"基于径向基函数神经网络的太阳辐照静态和动态变化快速收敛MPPT控制器","authors":"Chepuri Venkateswararao, K. A. Naik","doi":"10.1109/ICCECE51049.2023.10085281","DOIUrl":null,"url":null,"abstract":"The use of maximum power point tracking techniques, often known as MPPT algorithms, is required to improve the performance of PV systems. In rapidly varying atmospheric conditions, the traditional MPPT approaches do not work as intended. In the paper, a perturb and observe technique based MPPT algorithm is developed together with a radial basis function neural network (RBFNN). To specify and track the maximum power point (MPP), the proposed framework is implemented. Employing the RBFNN as the input-output training information set, the optimal duty cycle is computed while considering varied PV array current and voltage values. Further, an intelligent reconfiguration strategy is developed to enhance the MPP and array characteristics. The proposed hybrid RBFNN and intelligent reconfiguration methodology enhance the performance by 43.05%, 12.22%, 6.81%, 5.6% with the reduced convergence time of 0.06 sec under different shading conditions.","PeriodicalId":447131,"journal":{"name":"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast-Converging Radial Basis Function Neural Network-Based MPPT Controller for Static and Dynamic Variations in Solar Irradiation\",\"authors\":\"Chepuri Venkateswararao, K. A. Naik\",\"doi\":\"10.1109/ICCECE51049.2023.10085281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of maximum power point tracking techniques, often known as MPPT algorithms, is required to improve the performance of PV systems. In rapidly varying atmospheric conditions, the traditional MPPT approaches do not work as intended. In the paper, a perturb and observe technique based MPPT algorithm is developed together with a radial basis function neural network (RBFNN). To specify and track the maximum power point (MPP), the proposed framework is implemented. Employing the RBFNN as the input-output training information set, the optimal duty cycle is computed while considering varied PV array current and voltage values. Further, an intelligent reconfiguration strategy is developed to enhance the MPP and array characteristics. The proposed hybrid RBFNN and intelligent reconfiguration methodology enhance the performance by 43.05%, 12.22%, 6.81%, 5.6% with the reduced convergence time of 0.06 sec under different shading conditions.\",\"PeriodicalId\":447131,\"journal\":{\"name\":\"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE51049.2023.10085281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE51049.2023.10085281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用最大功率点跟踪技术,通常被称为MPPT算法,是提高光伏系统性能所必需的。在快速变化的大气条件下,传统的MPPT方法不能像预期的那样工作。本文将扰动观测技术与径向基函数神经网络(RBFNN)相结合,提出了一种基于扰动观测技术的MPPT算法。为了指定和跟踪最大功率点(MPP),实现了所提出的框架。采用RBFNN作为输入输出训练信息集,在考虑光伏阵列电流和电压变化的情况下,计算出最优占空比。在此基础上,提出了一种智能重构策略,以提高阵列的MPP和特性。在不同遮光条件下,混合RBFNN和智能重构方法的性能分别提高了43.05%、12.22%、6.81%和5.6%,收敛时间分别缩短了0.06秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast-Converging Radial Basis Function Neural Network-Based MPPT Controller for Static and Dynamic Variations in Solar Irradiation
The use of maximum power point tracking techniques, often known as MPPT algorithms, is required to improve the performance of PV systems. In rapidly varying atmospheric conditions, the traditional MPPT approaches do not work as intended. In the paper, a perturb and observe technique based MPPT algorithm is developed together with a radial basis function neural network (RBFNN). To specify and track the maximum power point (MPP), the proposed framework is implemented. Employing the RBFNN as the input-output training information set, the optimal duty cycle is computed while considering varied PV array current and voltage values. Further, an intelligent reconfiguration strategy is developed to enhance the MPP and array characteristics. The proposed hybrid RBFNN and intelligent reconfiguration methodology enhance the performance by 43.05%, 12.22%, 6.81%, 5.6% with the reduced convergence time of 0.06 sec under different shading conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信