{"title":"量子双层Heisenberg反铁磁体的自旋波间隙临界指数","authors":"P. Shevchenko, O. Sushkov","doi":"10.1071/PH98099","DOIUrl":null,"url":null,"abstract":"The two-layer Heisenberg antiferromagnet exhibits a zero temperature quantum phase transition from a disordered dimer phase to a collinear Neel phase, with long range order in the ground state. The spin-wave gap vanishes as Δ ∝ (J ⊥ – J ⊥ c) n approaching the transition point. To account for strong correlations, the S = 1 elementary excitations triplets are described as a dilute Bose gas with infinite on-site repulsion. We apply the Brueckner diagram approach which gives the critical index n ≈ 0 . 5. We demonstrate also that the linearised in density Brueckner equations give the mean field result n = 1. Finally, an expansion of the Brueckner equations in powers of the density, combined with the scaling hypothesis, gives n ≈ 0 . 67. This value agrees reasonably with that of the nonlinear O(3) σ model. Our approach demonstrates that for other quantum spin models the critical index can be different from that in the nonlinear σ model. We discuss the conditions for this to occur.","PeriodicalId":170873,"journal":{"name":"Australian Journal of Physics","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-wave gap critical index for the quantum two-layer Heisenberg antiferromagnet at T e0\",\"authors\":\"P. Shevchenko, O. Sushkov\",\"doi\":\"10.1071/PH98099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-layer Heisenberg antiferromagnet exhibits a zero temperature quantum phase transition from a disordered dimer phase to a collinear Neel phase, with long range order in the ground state. The spin-wave gap vanishes as Δ ∝ (J ⊥ – J ⊥ c) n approaching the transition point. To account for strong correlations, the S = 1 elementary excitations triplets are described as a dilute Bose gas with infinite on-site repulsion. We apply the Brueckner diagram approach which gives the critical index n ≈ 0 . 5. We demonstrate also that the linearised in density Brueckner equations give the mean field result n = 1. Finally, an expansion of the Brueckner equations in powers of the density, combined with the scaling hypothesis, gives n ≈ 0 . 67. This value agrees reasonably with that of the nonlinear O(3) σ model. Our approach demonstrates that for other quantum spin models the critical index can be different from that in the nonlinear σ model. We discuss the conditions for this to occur.\",\"PeriodicalId\":170873,\"journal\":{\"name\":\"Australian Journal of Physics\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/PH98099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/PH98099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spin-wave gap critical index for the quantum two-layer Heisenberg antiferromagnet at T e0
The two-layer Heisenberg antiferromagnet exhibits a zero temperature quantum phase transition from a disordered dimer phase to a collinear Neel phase, with long range order in the ground state. The spin-wave gap vanishes as Δ ∝ (J ⊥ – J ⊥ c) n approaching the transition point. To account for strong correlations, the S = 1 elementary excitations triplets are described as a dilute Bose gas with infinite on-site repulsion. We apply the Brueckner diagram approach which gives the critical index n ≈ 0 . 5. We demonstrate also that the linearised in density Brueckner equations give the mean field result n = 1. Finally, an expansion of the Brueckner equations in powers of the density, combined with the scaling hypothesis, gives n ≈ 0 . 67. This value agrees reasonably with that of the nonlinear O(3) σ model. Our approach demonstrates that for other quantum spin models the critical index can be different from that in the nonlinear σ model. We discuss the conditions for this to occur.