基于时间归一化PCA字典的心电压缩感知重构

P. Dolinský, I. András, J. Saliga, L. Michaeli
{"title":"基于时间归一化PCA字典的心电压缩感知重构","authors":"P. Dolinský, I. András, J. Saliga, L. Michaeli","doi":"10.23919/MEASUREMENT47340.2019.8779960","DOIUrl":null,"url":null,"abstract":"Compressed sensing (CS), due to its computational simplicity is a perspective data reduction technique for remote ECG monitoring applications. In this paper, a novel method of reconstruction for CS of ECG signal is proposed, which uses a time-normalized agnostic dictionary created by the principal component analysis (PCA) of training signals. The proposed method exploits a QRS detector to split the input signal into variable-size frames and shows significantly better reconstruction quality compared against traditional orthogonal matching pursuit (OMP) approach with Mexican hat and Symlet4 wavelet dictionaries.","PeriodicalId":129350,"journal":{"name":"2019 12th International Conference on Measurement","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reconstruction for ECG Compressed Sensing Using a Time-Normalized PCA Dictionary\",\"authors\":\"P. Dolinský, I. András, J. Saliga, L. Michaeli\",\"doi\":\"10.23919/MEASUREMENT47340.2019.8779960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing (CS), due to its computational simplicity is a perspective data reduction technique for remote ECG monitoring applications. In this paper, a novel method of reconstruction for CS of ECG signal is proposed, which uses a time-normalized agnostic dictionary created by the principal component analysis (PCA) of training signals. The proposed method exploits a QRS detector to split the input signal into variable-size frames and shows significantly better reconstruction quality compared against traditional orthogonal matching pursuit (OMP) approach with Mexican hat and Symlet4 wavelet dictionaries.\",\"PeriodicalId\":129350,\"journal\":{\"name\":\"2019 12th International Conference on Measurement\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th International Conference on Measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MEASUREMENT47340.2019.8779960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th International Conference on Measurement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MEASUREMENT47340.2019.8779960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

压缩感知(CS)由于其计算简单,是一种用于远程心电监测的透视数据缩减技术。本文提出了一种新的心电信号CS重构方法,该方法利用训练信号的主成分分析(PCA)生成的时间归一化不可知字典进行重构。该方法利用QRS检测器将输入信号分割成可变大小的帧,与传统的基于墨西哥帽和Symlet4小波字典的正交匹配追踪(OMP)方法相比,重构质量显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction for ECG Compressed Sensing Using a Time-Normalized PCA Dictionary
Compressed sensing (CS), due to its computational simplicity is a perspective data reduction technique for remote ECG monitoring applications. In this paper, a novel method of reconstruction for CS of ECG signal is proposed, which uses a time-normalized agnostic dictionary created by the principal component analysis (PCA) of training signals. The proposed method exploits a QRS detector to split the input signal into variable-size frames and shows significantly better reconstruction quality compared against traditional orthogonal matching pursuit (OMP) approach with Mexican hat and Symlet4 wavelet dictionaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信