{"title":"智能光伏逆变器改善孤岛微电网动态电压稳定性","authors":"N. Afrin, Fuwen Yang, Junwei Lu","doi":"10.1109/APPEEC45492.2019.8994745","DOIUrl":null,"url":null,"abstract":"This paper presents a voltage support(VS) control for smart photovoltaic (PV) inverters to enhance the dynamic voltage stability (DVS) of inverter based islanded microgrids (MGs). The proposed control utilizes the maximal current capacity of the inverter for the transient period in the event of voltage sag to provide reactive power support in conjunction with active power support. This optimized utilization of inverter capacity ensures the maximum injection of active power compared to other VS controls under similar network conditions. As a consequence, proposed control provides effective VS to resist the instability. Different case studies are conducted to examine the DVS of two inverter based MGs. Demonstrated results depict the potentiality of the proposed control on improving the DVS.","PeriodicalId":241317,"journal":{"name":"2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Voltage Stability Improvement of Islanded Microgrid by Smart PV Inverter\",\"authors\":\"N. Afrin, Fuwen Yang, Junwei Lu\",\"doi\":\"10.1109/APPEEC45492.2019.8994745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a voltage support(VS) control for smart photovoltaic (PV) inverters to enhance the dynamic voltage stability (DVS) of inverter based islanded microgrids (MGs). The proposed control utilizes the maximal current capacity of the inverter for the transient period in the event of voltage sag to provide reactive power support in conjunction with active power support. This optimized utilization of inverter capacity ensures the maximum injection of active power compared to other VS controls under similar network conditions. As a consequence, proposed control provides effective VS to resist the instability. Different case studies are conducted to examine the DVS of two inverter based MGs. Demonstrated results depict the potentiality of the proposed control on improving the DVS.\",\"PeriodicalId\":241317,\"journal\":{\"name\":\"2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC45492.2019.8994745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC45492.2019.8994745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Voltage Stability Improvement of Islanded Microgrid by Smart PV Inverter
This paper presents a voltage support(VS) control for smart photovoltaic (PV) inverters to enhance the dynamic voltage stability (DVS) of inverter based islanded microgrids (MGs). The proposed control utilizes the maximal current capacity of the inverter for the transient period in the event of voltage sag to provide reactive power support in conjunction with active power support. This optimized utilization of inverter capacity ensures the maximum injection of active power compared to other VS controls under similar network conditions. As a consequence, proposed control provides effective VS to resist the instability. Different case studies are conducted to examine the DVS of two inverter based MGs. Demonstrated results depict the potentiality of the proposed control on improving the DVS.