{"title":"基于拉普拉斯空间域的两相流体流动边界控制","authors":"S. Djordjevic, O. Bosgra, P. V. D. Hof","doi":"10.1109/ACC.2011.5991245","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the Laplace-space approach to a linearized two-phase flow model governed by a set of hyperbolic-like partial differential equations (PDEs). Compared to the discretization approaches to PDEs, which result in a large number of ordinary differential equations (ODEs), the Laplace-space approach gives a set of functional relationships that describe the two-phase flow behavior with respect to space. The key element in our work is the Laplace space representation of the two-phase flow model that connects the two-phase flow regimes and causal input/output structures. The causal input/output structures need to be determined in order to design a boundary controller that can regulate the flow. The main advantage of the Laplace-space approach to the two phase flow and effectiveness of the proposed boundary control design are illustrated on a numerical example of a counter current two-phase flow in a vertical bubble column.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Boundary control of two-phase fluid flow using the Laplace-space domain\",\"authors\":\"S. Djordjevic, O. Bosgra, P. V. D. Hof\",\"doi\":\"10.1109/ACC.2011.5991245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the Laplace-space approach to a linearized two-phase flow model governed by a set of hyperbolic-like partial differential equations (PDEs). Compared to the discretization approaches to PDEs, which result in a large number of ordinary differential equations (ODEs), the Laplace-space approach gives a set of functional relationships that describe the two-phase flow behavior with respect to space. The key element in our work is the Laplace space representation of the two-phase flow model that connects the two-phase flow regimes and causal input/output structures. The causal input/output structures need to be determined in order to design a boundary controller that can regulate the flow. The main advantage of the Laplace-space approach to the two phase flow and effectiveness of the proposed boundary control design are illustrated on a numerical example of a counter current two-phase flow in a vertical bubble column.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2011.5991245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2011.5991245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Boundary control of two-phase fluid flow using the Laplace-space domain
In this paper, we introduce the Laplace-space approach to a linearized two-phase flow model governed by a set of hyperbolic-like partial differential equations (PDEs). Compared to the discretization approaches to PDEs, which result in a large number of ordinary differential equations (ODEs), the Laplace-space approach gives a set of functional relationships that describe the two-phase flow behavior with respect to space. The key element in our work is the Laplace space representation of the two-phase flow model that connects the two-phase flow regimes and causal input/output structures. The causal input/output structures need to be determined in order to design a boundary controller that can regulate the flow. The main advantage of the Laplace-space approach to the two phase flow and effectiveness of the proposed boundary control design are illustrated on a numerical example of a counter current two-phase flow in a vertical bubble column.