{"title":"汞对大鼠脑Mg(++)- atp酶的体外影响。","authors":"C S Chetty, V McBride, S Sands, B Rajanna","doi":"10.3109/13813459009113986","DOIUrl":null,"url":null,"abstract":"<p><p>Mercuric chloride (Hg) in micromolar concentrations inhibited Mg(++)-dependent ATPase activity in rat brain microsomes. Inhibition was higher in oligomycin-sensitive (O.S.) than oligomycin-insensitive (O.I.) Mg(++)-ATPase. Hydrolysis of ATP with 15 and 50 micrograms of microsomal protein for 45 min without and with (2.10(-7M) Hg showed linear rates for 15-20 min. Altered pH vs activity demonstrated comparable inhibitions by Hg in buffered (neutral greater than acidic greater than basic) pH ranges. Inhibition of enzyme activity by Hg was found to be greater at 37 degrees C than at lower temperatures suggesting positive correlation trend. An uncompetitive inhibition with respect to the activation of Mg(++)-ATPase, O.S. Mg(++)-ATPase and O.I. Mg++ ATPase by ATP was indicated by a decrease in apparent Vmax and Km. Mg(++)-activation kinetic studies indicated that Hg causes uncompetitive inhibition of Mg(++)-ATPase and O.I. Mg(++)-ATPase and mixed inhibition of O.S. Mg(++)-ATPase. Inhibition was partially restored by repeated washings. These results indicate that the inhibition of microsomal Mg(++)-ATPase by Hg was pH, temperature, enzyme and Mg++ concentration dependent. Additionally, the data also suggest that O.S. compared to O.I. Mg(++)-ATPase is more sensitive to Hg toxicity.</p>","PeriodicalId":8170,"journal":{"name":"Archives internationales de physiologie et de biochimie","volume":"98 5","pages":"261-7"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/13813459009113986","citationCount":"6","resultStr":"{\"title\":\"Effects in vitro of mercury on rat brain Mg(++)-ATPase.\",\"authors\":\"C S Chetty, V McBride, S Sands, B Rajanna\",\"doi\":\"10.3109/13813459009113986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mercuric chloride (Hg) in micromolar concentrations inhibited Mg(++)-dependent ATPase activity in rat brain microsomes. Inhibition was higher in oligomycin-sensitive (O.S.) than oligomycin-insensitive (O.I.) Mg(++)-ATPase. Hydrolysis of ATP with 15 and 50 micrograms of microsomal protein for 45 min without and with (2.10(-7M) Hg showed linear rates for 15-20 min. Altered pH vs activity demonstrated comparable inhibitions by Hg in buffered (neutral greater than acidic greater than basic) pH ranges. Inhibition of enzyme activity by Hg was found to be greater at 37 degrees C than at lower temperatures suggesting positive correlation trend. An uncompetitive inhibition with respect to the activation of Mg(++)-ATPase, O.S. Mg(++)-ATPase and O.I. Mg++ ATPase by ATP was indicated by a decrease in apparent Vmax and Km. Mg(++)-activation kinetic studies indicated that Hg causes uncompetitive inhibition of Mg(++)-ATPase and O.I. Mg(++)-ATPase and mixed inhibition of O.S. Mg(++)-ATPase. Inhibition was partially restored by repeated washings. These results indicate that the inhibition of microsomal Mg(++)-ATPase by Hg was pH, temperature, enzyme and Mg++ concentration dependent. Additionally, the data also suggest that O.S. compared to O.I. Mg(++)-ATPase is more sensitive to Hg toxicity.</p>\",\"PeriodicalId\":8170,\"journal\":{\"name\":\"Archives internationales de physiologie et de biochimie\",\"volume\":\"98 5\",\"pages\":\"261-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/13813459009113986\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives internationales de physiologie et de biochimie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/13813459009113986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives internationales de physiologie et de biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/13813459009113986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects in vitro of mercury on rat brain Mg(++)-ATPase.
Mercuric chloride (Hg) in micromolar concentrations inhibited Mg(++)-dependent ATPase activity in rat brain microsomes. Inhibition was higher in oligomycin-sensitive (O.S.) than oligomycin-insensitive (O.I.) Mg(++)-ATPase. Hydrolysis of ATP with 15 and 50 micrograms of microsomal protein for 45 min without and with (2.10(-7M) Hg showed linear rates for 15-20 min. Altered pH vs activity demonstrated comparable inhibitions by Hg in buffered (neutral greater than acidic greater than basic) pH ranges. Inhibition of enzyme activity by Hg was found to be greater at 37 degrees C than at lower temperatures suggesting positive correlation trend. An uncompetitive inhibition with respect to the activation of Mg(++)-ATPase, O.S. Mg(++)-ATPase and O.I. Mg++ ATPase by ATP was indicated by a decrease in apparent Vmax and Km. Mg(++)-activation kinetic studies indicated that Hg causes uncompetitive inhibition of Mg(++)-ATPase and O.I. Mg(++)-ATPase and mixed inhibition of O.S. Mg(++)-ATPase. Inhibition was partially restored by repeated washings. These results indicate that the inhibition of microsomal Mg(++)-ATPase by Hg was pH, temperature, enzyme and Mg++ concentration dependent. Additionally, the data also suggest that O.S. compared to O.I. Mg(++)-ATPase is more sensitive to Hg toxicity.