聚类车辆类别分布和轴载谱用于路面性能的力学经验预测

Amanul Hasan, R. Islam, R. Tarefder
{"title":"聚类车辆类别分布和轴载谱用于路面性能的力学经验预测","authors":"Amanul Hasan, R. Islam, R. Tarefder","doi":"10.1061/(ASCE)TE.1943-5436.0000876","DOIUrl":null,"url":null,"abstract":"AbstractPast studies have determined the effects of the pavement mechanistic-empirical (ME) default (Level 3) values of vehicle class distribution (VCD) and axle load spectra (ALS) on pavement performance. However, it is still not clear how the clustered VCD and ALS affect the ME predicted pavement performance. In this study, traffic data from 10 weigh-in-motion (WIM) stations were gathered and analyzed to develop the VCD and ALS values using arithmetic average and clustering methods (Level 2). Next, using Level 2, Level 3, and site-specific (Level 1) inputs of VCD and ALS, the pavement ME predicted performance was determined. The results show that the predicted performance by the cluster (Level 2) data are very close to those of the site-specific data (Level 1). Performance generated by the ME default values (Level 3) are significantly different from those generated by the site-specific or cluster values. When comparing the performance of the ME design default (Level 3) with those of the statewide averag...","PeriodicalId":305908,"journal":{"name":"Journal of Transportation Engineering-asce","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Clustering Vehicle Class Distribution and Axle Load Spectra for Mechanistic-Empirical Predicting Pavement Performance\",\"authors\":\"Amanul Hasan, R. Islam, R. Tarefder\",\"doi\":\"10.1061/(ASCE)TE.1943-5436.0000876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractPast studies have determined the effects of the pavement mechanistic-empirical (ME) default (Level 3) values of vehicle class distribution (VCD) and axle load spectra (ALS) on pavement performance. However, it is still not clear how the clustered VCD and ALS affect the ME predicted pavement performance. In this study, traffic data from 10 weigh-in-motion (WIM) stations were gathered and analyzed to develop the VCD and ALS values using arithmetic average and clustering methods (Level 2). Next, using Level 2, Level 3, and site-specific (Level 1) inputs of VCD and ALS, the pavement ME predicted performance was determined. The results show that the predicted performance by the cluster (Level 2) data are very close to those of the site-specific data (Level 1). Performance generated by the ME default values (Level 3) are significantly different from those generated by the site-specific or cluster values. When comparing the performance of the ME design default (Level 3) with those of the statewide averag...\",\"PeriodicalId\":305908,\"journal\":{\"name\":\"Journal of Transportation Engineering-asce\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Transportation Engineering-asce\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/(ASCE)TE.1943-5436.0000876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Engineering-asce","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/(ASCE)TE.1943-5436.0000876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要以往的研究已经确定了车辆类别分布(VCD)和轴载谱(ALS)的路面力学-经验(ME)默认值(Level 3)对路面性能的影响。然而,聚类VCD和ALS如何影响ME预测的路面性能仍不清楚。本研究收集并分析了10个动态加权(WIM)站点的交通数据,采用算法平均和聚类方法(第2级)得到了VCD和ALS值。接下来,使用VCD和ALS的第2级、第3级和特定站点(第1级)输入,确定了路面ME预测性能。结果表明,集群(Level 2)数据的预测性能与站点特定数据(Level 1)的预测性能非常接近。ME默认值(Level 3)与站点特定值或集群值的预测性能存在显著差异。当将ME设计默认值(Level 3)的性能与全州平均性能进行比较时……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering Vehicle Class Distribution and Axle Load Spectra for Mechanistic-Empirical Predicting Pavement Performance
AbstractPast studies have determined the effects of the pavement mechanistic-empirical (ME) default (Level 3) values of vehicle class distribution (VCD) and axle load spectra (ALS) on pavement performance. However, it is still not clear how the clustered VCD and ALS affect the ME predicted pavement performance. In this study, traffic data from 10 weigh-in-motion (WIM) stations were gathered and analyzed to develop the VCD and ALS values using arithmetic average and clustering methods (Level 2). Next, using Level 2, Level 3, and site-specific (Level 1) inputs of VCD and ALS, the pavement ME predicted performance was determined. The results show that the predicted performance by the cluster (Level 2) data are very close to those of the site-specific data (Level 1). Performance generated by the ME default values (Level 3) are significantly different from those generated by the site-specific or cluster values. When comparing the performance of the ME design default (Level 3) with those of the statewide averag...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信