生物系统的形式化建模

Qinsi Wang, E. Clarke
{"title":"生物系统的形式化建模","authors":"Qinsi Wang, E. Clarke","doi":"10.1109/HLDVT.2016.7748273","DOIUrl":null,"url":null,"abstract":"As biomedical research advances into more complicated systems, there is an increasing need to model and analyze these systems to better understand them. For decades, biologists have been using diagrammatic models to describe and understand the mechanisms and dynamics behind their experimental observations. Although these models are simple to be built and understood, they can only offer a rather static picture of the corresponding biological systems, and scalability is limited. Thus, there is an increasing need to develop formalism into more dynamic forms that can capture time-dependent processes, together with increases in the models scale and complexity. In this invited review paper, we argue that the formal modeling formalisms can be applied fruitfully to biological systems, and can be complementary to the traditional mathematical descriptive modeling approaches used in systems biology. We also discuss one example: a stochastic hybrid model of the effect of estrogen at different levels in species' population in a freshwater ecosystem.","PeriodicalId":166427,"journal":{"name":"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Formal modeling of biological systems\",\"authors\":\"Qinsi Wang, E. Clarke\",\"doi\":\"10.1109/HLDVT.2016.7748273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As biomedical research advances into more complicated systems, there is an increasing need to model and analyze these systems to better understand them. For decades, biologists have been using diagrammatic models to describe and understand the mechanisms and dynamics behind their experimental observations. Although these models are simple to be built and understood, they can only offer a rather static picture of the corresponding biological systems, and scalability is limited. Thus, there is an increasing need to develop formalism into more dynamic forms that can capture time-dependent processes, together with increases in the models scale and complexity. In this invited review paper, we argue that the formal modeling formalisms can be applied fruitfully to biological systems, and can be complementary to the traditional mathematical descriptive modeling approaches used in systems biology. We also discuss one example: a stochastic hybrid model of the effect of estrogen at different levels in species' population in a freshwater ecosystem.\",\"PeriodicalId\":166427,\"journal\":{\"name\":\"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HLDVT.2016.7748273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2016.7748273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着生物医学研究进入更复杂的系统,越来越需要对这些系统进行建模和分析,以更好地理解它们。几十年来,生物学家一直在使用图解模型来描述和理解实验观察背后的机制和动力学。尽管这些模型易于构建和理解,但它们只能提供相应生物系统的静态图像,而且可扩展性有限。因此,越来越需要将形式主义发展成更动态的形式,以捕获与时间相关的过程,以及模型规模和复杂性的增加。在这篇特邀评论论文中,我们认为形式化建模形式化可以有效地应用于生物系统,并且可以补充系统生物学中使用的传统数学描述建模方法。我们还讨论了一个例子:淡水生态系统中不同水平雌激素对物种种群影响的随机杂交模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formal modeling of biological systems
As biomedical research advances into more complicated systems, there is an increasing need to model and analyze these systems to better understand them. For decades, biologists have been using diagrammatic models to describe and understand the mechanisms and dynamics behind their experimental observations. Although these models are simple to be built and understood, they can only offer a rather static picture of the corresponding biological systems, and scalability is limited. Thus, there is an increasing need to develop formalism into more dynamic forms that can capture time-dependent processes, together with increases in the models scale and complexity. In this invited review paper, we argue that the formal modeling formalisms can be applied fruitfully to biological systems, and can be complementary to the traditional mathematical descriptive modeling approaches used in systems biology. We also discuss one example: a stochastic hybrid model of the effect of estrogen at different levels in species' population in a freshwater ecosystem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信