压电陶瓷迟滞建模与SIMO控制

Yuhe Li, Yanxiang Chen, Xiaogen Hu
{"title":"压电陶瓷迟滞建模与SIMO控制","authors":"Yuhe Li, Yanxiang Chen, Xiaogen Hu","doi":"10.1109/ICOOM.2012.6316331","DOIUrl":null,"url":null,"abstract":"Micro-displacement devices, especially nano-scale actuators based on the inverse piezoelectric effect of piezoelectric ceramic are widely used. In Atomic Force Microscope (AFM) nano-level lateral resolution of probe or sample micro-displacement can be achieved using piezoelectric actuator stage. However, significant accuracy reduction is brought about by nonlinearity and multiple-value characteristics of piezoceramic hysteresis. In order to enhance the resolution of AFM system, the modeling of piezoelectric hysteresis using BP neural-network is presented in this paper based on the central symmetry characteristics, and the model parameters are gained by means of neural network training, then a Single-Input-Multiple-Output (SIMO) control method of piezoelectric ceramic is constructed. Based on the SIMO control model the open-loop tracking control experiment for piezoelectric ceramic is performed, and the tracking control error is between -47nm and 63nm. The experiment results show that the control model has the advantages of high open-loop tracking accuracy and anti-interference capability.","PeriodicalId":129625,"journal":{"name":"2012 International Conference on Optoelectronics and Microelectronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and SIMO controlling of piezoceramic hysteresis\",\"authors\":\"Yuhe Li, Yanxiang Chen, Xiaogen Hu\",\"doi\":\"10.1109/ICOOM.2012.6316331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-displacement devices, especially nano-scale actuators based on the inverse piezoelectric effect of piezoelectric ceramic are widely used. In Atomic Force Microscope (AFM) nano-level lateral resolution of probe or sample micro-displacement can be achieved using piezoelectric actuator stage. However, significant accuracy reduction is brought about by nonlinearity and multiple-value characteristics of piezoceramic hysteresis. In order to enhance the resolution of AFM system, the modeling of piezoelectric hysteresis using BP neural-network is presented in this paper based on the central symmetry characteristics, and the model parameters are gained by means of neural network training, then a Single-Input-Multiple-Output (SIMO) control method of piezoelectric ceramic is constructed. Based on the SIMO control model the open-loop tracking control experiment for piezoelectric ceramic is performed, and the tracking control error is between -47nm and 63nm. The experiment results show that the control model has the advantages of high open-loop tracking accuracy and anti-interference capability.\",\"PeriodicalId\":129625,\"journal\":{\"name\":\"2012 International Conference on Optoelectronics and Microelectronics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Optoelectronics and Microelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOOM.2012.6316331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Optoelectronics and Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOOM.2012.6316331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于压电陶瓷逆压电效应的微位移器件,尤其是纳米级驱动器得到了广泛的应用。在原子力显微镜(AFM)中,利用压电作动器可以实现探针或样品微位移的纳米级横向分辨率。然而,压电陶瓷迟滞的非线性和多值特性会显著降低测量精度。为了提高AFM系统的分辨率,基于中心对称特性,采用BP神经网络对压电陶瓷的磁滞进行建模,并通过神经网络训练获得模型参数,构建了压电陶瓷的单输入多输出(SIMO)控制方法。基于SIMO控制模型对压电陶瓷进行了开环跟踪控制实验,跟踪控制误差在-47nm ~ 63nm之间。实验结果表明,该控制模型具有开环跟踪精度高、抗干扰能力强等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and SIMO controlling of piezoceramic hysteresis
Micro-displacement devices, especially nano-scale actuators based on the inverse piezoelectric effect of piezoelectric ceramic are widely used. In Atomic Force Microscope (AFM) nano-level lateral resolution of probe or sample micro-displacement can be achieved using piezoelectric actuator stage. However, significant accuracy reduction is brought about by nonlinearity and multiple-value characteristics of piezoceramic hysteresis. In order to enhance the resolution of AFM system, the modeling of piezoelectric hysteresis using BP neural-network is presented in this paper based on the central symmetry characteristics, and the model parameters are gained by means of neural network training, then a Single-Input-Multiple-Output (SIMO) control method of piezoelectric ceramic is constructed. Based on the SIMO control model the open-loop tracking control experiment for piezoelectric ceramic is performed, and the tracking control error is between -47nm and 63nm. The experiment results show that the control model has the advantages of high open-loop tracking accuracy and anti-interference capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信