{"title":"为集合覆盖问题定制计算机器","authors":"Christian Plessl, M. Platzner","doi":"10.1109/FPGA.2002.1106671","DOIUrl":null,"url":null,"abstract":"We present instance-specific custom computing machines for the set covering problem. Four accelerator architectures are developed that implement branch & bound in 3-valued logic and many of the deduction techniques found in software solvers. We use set covering benchmarks from two-level logic minimization and Steiner triple systems to derive and discuss experimental results. The resulting raw speedups are in the order of four magnitudes on average. Finally, we propose a hybrid solver architecture that combines the raw speed of instance-specific reconfigurable hardware with flexible bounding schemes implemented in software.","PeriodicalId":272235,"journal":{"name":"Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Custom computing machines for the set covering problem\",\"authors\":\"Christian Plessl, M. Platzner\",\"doi\":\"10.1109/FPGA.2002.1106671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present instance-specific custom computing machines for the set covering problem. Four accelerator architectures are developed that implement branch & bound in 3-valued logic and many of the deduction techniques found in software solvers. We use set covering benchmarks from two-level logic minimization and Steiner triple systems to derive and discuss experimental results. The resulting raw speedups are in the order of four magnitudes on average. Finally, we propose a hybrid solver architecture that combines the raw speed of instance-specific reconfigurable hardware with flexible bounding schemes implemented in software.\",\"PeriodicalId\":272235,\"journal\":{\"name\":\"Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPGA.2002.1106671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPGA.2002.1106671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Custom computing machines for the set covering problem
We present instance-specific custom computing machines for the set covering problem. Four accelerator architectures are developed that implement branch & bound in 3-valued logic and many of the deduction techniques found in software solvers. We use set covering benchmarks from two-level logic minimization and Steiner triple systems to derive and discuss experimental results. The resulting raw speedups are in the order of four magnitudes on average. Finally, we propose a hybrid solver architecture that combines the raw speed of instance-specific reconfigurable hardware with flexible bounding schemes implemented in software.