使用机器学习的加密网络流量分析与分类

V. Muliukha, Leonid U. Laboshin, A. Lukashin, N. Nashivochnikov
{"title":"使用机器学习的加密网络流量分析与分类","authors":"V. Muliukha, Leonid U. Laboshin, A. Lukashin, N. Nashivochnikov","doi":"10.1109/SCM50615.2020.9198811","DOIUrl":null,"url":null,"abstract":"This paper presents a prototype of an intelligent system for advanced analytics of encrypted traffic with the implementation of models and software developed in Peter the Great St. Petersburg Polytechnic University. Article presents methods for classifying encrypted traffic and examines the effectiveness of classifying applications in encrypted SSL sessions and determining user actions in VPN connections. The article presents the results of experimental studies of software that allows classification of encrypted traffic. The results of classification of VPN connections using the random forest algorithm are presented, as well as the results of classification of SSL traffic using naive Bayesian classifier.","PeriodicalId":169458,"journal":{"name":"2020 XXIII International Conference on Soft Computing and Measurements (SCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analysis and Classification of Encrypted Network Traffic Using Machine Learning\",\"authors\":\"V. Muliukha, Leonid U. Laboshin, A. Lukashin, N. Nashivochnikov\",\"doi\":\"10.1109/SCM50615.2020.9198811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a prototype of an intelligent system for advanced analytics of encrypted traffic with the implementation of models and software developed in Peter the Great St. Petersburg Polytechnic University. Article presents methods for classifying encrypted traffic and examines the effectiveness of classifying applications in encrypted SSL sessions and determining user actions in VPN connections. The article presents the results of experimental studies of software that allows classification of encrypted traffic. The results of classification of VPN connections using the random forest algorithm are presented, as well as the results of classification of SSL traffic using naive Bayesian classifier.\",\"PeriodicalId\":169458,\"journal\":{\"name\":\"2020 XXIII International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 XXIII International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCM50615.2020.9198811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXIII International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM50615.2020.9198811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了一个智能系统的原型,用于加密流量的高级分析,并实现了彼得大帝圣彼得堡理工大学开发的模型和软件。本文介绍了对加密流量进行分类的方法,并检查了对加密SSL会话中的应用程序进行分类和确定VPN连接中的用户操作的有效性。本文介绍了对加密流量进行分类的软件的实验研究结果。给出了使用随机森林算法对VPN连接进行分类的结果,以及使用朴素贝叶斯分类器对SSL流量进行分类的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Classification of Encrypted Network Traffic Using Machine Learning
This paper presents a prototype of an intelligent system for advanced analytics of encrypted traffic with the implementation of models and software developed in Peter the Great St. Petersburg Polytechnic University. Article presents methods for classifying encrypted traffic and examines the effectiveness of classifying applications in encrypted SSL sessions and determining user actions in VPN connections. The article presents the results of experimental studies of software that allows classification of encrypted traffic. The results of classification of VPN connections using the random forest algorithm are presented, as well as the results of classification of SSL traffic using naive Bayesian classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信