{"title":"必需脂肪酸缺乏大鼠非寒战产热及褐色脂肪组织活性。","authors":"M Goubern, J Yazbeck, C Senault, R Portet","doi":"10.3109/13813459009113977","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of essential fatty acid (EFA) deficiency on energetic metabolism and interscapular brown adipose tissue (BAT) activity were examined in the cold acclimated rat. Weanling male Long-Evans rats were fed on a low fat semipurified diet (control diet, 2% sunflower oil; EFA deficient diet, 2% hydrogenated coconut oil) for 9 weeks. They were exposed at 5 degrees C for the last 5 weeks. In EFA deficient rats, compared to controls, growth retardation reached 22% at sacrifice. Caloric intake being the same in the two groups, it follows that food efficiency was decreased by 40%. Resting metabolism in relation to body surface area was 25% increased. Calorigenic effect of norepinephrine (NE) in vivo (test of non-shivering thermogenesis) underwent a marked decrease of 34%. BAT weight was 21% decreased but total and mitochondrial protein content showed no variation. A 26% increase in purine nucleotide binding per BAT (taken as an index of thermogenic activity) was observed, suggesting that the enhancement in resting metabolism observed was mainly due to increased BAT thermogenesis. However, BAT mitochondria respiratory studies which are more direct functional tests showed a marked impairment of maximal O2 consumption of about 30% with palmitoyl-carnitine or acetyl-carnitine (both in presence of malate) or with alpha-glycerophosphate as substrate. It is likely that this impaired maximal BAT oxidative capacity may explain the impaired NE calorigenic effect in vivo. A possible increase in mitochondrial basal permeability is also discussed.</p>","PeriodicalId":8170,"journal":{"name":"Archives internationales de physiologie et de biochimie","volume":"98 4","pages":"193-9"},"PeriodicalIF":0.0000,"publicationDate":"1990-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/13813459009113977","citationCount":"7","resultStr":"{\"title\":\"Non-shivering thermogenesis and brown adipose tissue activity in essential fatty acid deficient rats.\",\"authors\":\"M Goubern, J Yazbeck, C Senault, R Portet\",\"doi\":\"10.3109/13813459009113977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effects of essential fatty acid (EFA) deficiency on energetic metabolism and interscapular brown adipose tissue (BAT) activity were examined in the cold acclimated rat. Weanling male Long-Evans rats were fed on a low fat semipurified diet (control diet, 2% sunflower oil; EFA deficient diet, 2% hydrogenated coconut oil) for 9 weeks. They were exposed at 5 degrees C for the last 5 weeks. In EFA deficient rats, compared to controls, growth retardation reached 22% at sacrifice. Caloric intake being the same in the two groups, it follows that food efficiency was decreased by 40%. Resting metabolism in relation to body surface area was 25% increased. Calorigenic effect of norepinephrine (NE) in vivo (test of non-shivering thermogenesis) underwent a marked decrease of 34%. BAT weight was 21% decreased but total and mitochondrial protein content showed no variation. A 26% increase in purine nucleotide binding per BAT (taken as an index of thermogenic activity) was observed, suggesting that the enhancement in resting metabolism observed was mainly due to increased BAT thermogenesis. However, BAT mitochondria respiratory studies which are more direct functional tests showed a marked impairment of maximal O2 consumption of about 30% with palmitoyl-carnitine or acetyl-carnitine (both in presence of malate) or with alpha-glycerophosphate as substrate. It is likely that this impaired maximal BAT oxidative capacity may explain the impaired NE calorigenic effect in vivo. A possible increase in mitochondrial basal permeability is also discussed.</p>\",\"PeriodicalId\":8170,\"journal\":{\"name\":\"Archives internationales de physiologie et de biochimie\",\"volume\":\"98 4\",\"pages\":\"193-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/13813459009113977\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives internationales de physiologie et de biochimie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/13813459009113977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives internationales de physiologie et de biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/13813459009113977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-shivering thermogenesis and brown adipose tissue activity in essential fatty acid deficient rats.
The effects of essential fatty acid (EFA) deficiency on energetic metabolism and interscapular brown adipose tissue (BAT) activity were examined in the cold acclimated rat. Weanling male Long-Evans rats were fed on a low fat semipurified diet (control diet, 2% sunflower oil; EFA deficient diet, 2% hydrogenated coconut oil) for 9 weeks. They were exposed at 5 degrees C for the last 5 weeks. In EFA deficient rats, compared to controls, growth retardation reached 22% at sacrifice. Caloric intake being the same in the two groups, it follows that food efficiency was decreased by 40%. Resting metabolism in relation to body surface area was 25% increased. Calorigenic effect of norepinephrine (NE) in vivo (test of non-shivering thermogenesis) underwent a marked decrease of 34%. BAT weight was 21% decreased but total and mitochondrial protein content showed no variation. A 26% increase in purine nucleotide binding per BAT (taken as an index of thermogenic activity) was observed, suggesting that the enhancement in resting metabolism observed was mainly due to increased BAT thermogenesis. However, BAT mitochondria respiratory studies which are more direct functional tests showed a marked impairment of maximal O2 consumption of about 30% with palmitoyl-carnitine or acetyl-carnitine (both in presence of malate) or with alpha-glycerophosphate as substrate. It is likely that this impaired maximal BAT oxidative capacity may explain the impaired NE calorigenic effect in vivo. A possible increase in mitochondrial basal permeability is also discussed.