{"title":"RICE50+:国家和区域一级的DICE模型","authors":"Paolo Gazzotti","doi":"10.18174/sesmo.18038","DOIUrl":null,"url":null,"abstract":"Benefit-cost Integrated Assessment Models (IAMs) have been largely used for optimal policies and mitigation pathways countering climate change. However, the available models are relatively limited in the representation of regional heterogeneity. This is despite strong evidence of significant variation of local mitigation costs and benefits, institutional capacity, environmental and economic priorities. Here, I introduce RICE50+, a benefit-cost optimizing IAM with more than 50 independently deciding regions or countries. Its core foundation is the DICE model, improved with several original contributions. These include new calibrations on actual mitigation cost data, full integration of recent empirically based impact functions, alternative socioeconomic reference projections as well as normative preferences, including welfare specifications explicitly featuring inequality aversion. Due to its high level of regional detail, the model can support researchers in better investigating the role of heterogeneity in international cooperation, cross-country inequalities, and climate change impacts under a variety of mitigation pathways and scenarios.","PeriodicalId":166291,"journal":{"name":"Socio-Environmental Systems Modelling","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"RICE50+: DICE model at country and regional level\",\"authors\":\"Paolo Gazzotti\",\"doi\":\"10.18174/sesmo.18038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benefit-cost Integrated Assessment Models (IAMs) have been largely used for optimal policies and mitigation pathways countering climate change. However, the available models are relatively limited in the representation of regional heterogeneity. This is despite strong evidence of significant variation of local mitigation costs and benefits, institutional capacity, environmental and economic priorities. Here, I introduce RICE50+, a benefit-cost optimizing IAM with more than 50 independently deciding regions or countries. Its core foundation is the DICE model, improved with several original contributions. These include new calibrations on actual mitigation cost data, full integration of recent empirically based impact functions, alternative socioeconomic reference projections as well as normative preferences, including welfare specifications explicitly featuring inequality aversion. Due to its high level of regional detail, the model can support researchers in better investigating the role of heterogeneity in international cooperation, cross-country inequalities, and climate change impacts under a variety of mitigation pathways and scenarios.\",\"PeriodicalId\":166291,\"journal\":{\"name\":\"Socio-Environmental Systems Modelling\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Socio-Environmental Systems Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18174/sesmo.18038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socio-Environmental Systems Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18174/sesmo.18038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Benefit-cost Integrated Assessment Models (IAMs) have been largely used for optimal policies and mitigation pathways countering climate change. However, the available models are relatively limited in the representation of regional heterogeneity. This is despite strong evidence of significant variation of local mitigation costs and benefits, institutional capacity, environmental and economic priorities. Here, I introduce RICE50+, a benefit-cost optimizing IAM with more than 50 independently deciding regions or countries. Its core foundation is the DICE model, improved with several original contributions. These include new calibrations on actual mitigation cost data, full integration of recent empirically based impact functions, alternative socioeconomic reference projections as well as normative preferences, including welfare specifications explicitly featuring inequality aversion. Due to its high level of regional detail, the model can support researchers in better investigating the role of heterogeneity in international cooperation, cross-country inequalities, and climate change impacts under a variety of mitigation pathways and scenarios.