具有不确定可再生能源的车-网分布鲁棒优化

Qi Li, Pengchao Tian, Ye Shi, Yuanming Shi, H. Tuan
{"title":"具有不确定可再生能源的车-网分布鲁棒优化","authors":"Qi Li, Pengchao Tian, Ye Shi, Yuanming Shi, H. Tuan","doi":"10.1109/ICCAIS56082.2022.9990376","DOIUrl":null,"url":null,"abstract":"Recent years have seen the wide applications of renewable energy sources and plug-in electric vehicles in smart grids. However, their inherent uncertainties may lead to serious voltage deviations, load fluctuations and power losses. In this paper, we formulate a distributionally robust optimization (DRO) for vehicle-to-grid considering the uncertainties of solar power and PEVs. We utilize conditional value at risk to quantify the risk of violating inequalities containing uncertainties and the Wasserstein metric to reformulate the DRO problem into a tractable convex optimization problem. The DRO is implemented under a model predictive control framework to further reduce the uncertainties of PEVs and RESs. Numerical experiment results validate the efficiency of our method.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributionally Robust Optimization for Vehicle-to-grid with Uncertain Renewable Energy\",\"authors\":\"Qi Li, Pengchao Tian, Ye Shi, Yuanming Shi, H. Tuan\",\"doi\":\"10.1109/ICCAIS56082.2022.9990376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have seen the wide applications of renewable energy sources and plug-in electric vehicles in smart grids. However, their inherent uncertainties may lead to serious voltage deviations, load fluctuations and power losses. In this paper, we formulate a distributionally robust optimization (DRO) for vehicle-to-grid considering the uncertainties of solar power and PEVs. We utilize conditional value at risk to quantify the risk of violating inequalities containing uncertainties and the Wasserstein metric to reformulate the DRO problem into a tractable convex optimization problem. The DRO is implemented under a model predictive control framework to further reduce the uncertainties of PEVs and RESs. Numerical experiment results validate the efficiency of our method.\",\"PeriodicalId\":273404,\"journal\":{\"name\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS56082.2022.9990376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,可再生能源和插电式电动汽车在智能电网中的广泛应用。然而,其固有的不确定性可能导致严重的电压偏差、负载波动和功率损失。考虑太阳能发电和电动汽车的不确定性,提出了一种分布式鲁棒优化方案。我们利用风险中的条件值来量化违反包含不确定性的不等式的风险,并利用Wasserstein度量将DRO问题重新表述为可处理的凸优化问题。为了进一步降低pev和RESs的不确定性,在模型预测控制框架下实现了DRO。数值实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributionally Robust Optimization for Vehicle-to-grid with Uncertain Renewable Energy
Recent years have seen the wide applications of renewable energy sources and plug-in electric vehicles in smart grids. However, their inherent uncertainties may lead to serious voltage deviations, load fluctuations and power losses. In this paper, we formulate a distributionally robust optimization (DRO) for vehicle-to-grid considering the uncertainties of solar power and PEVs. We utilize conditional value at risk to quantify the risk of violating inequalities containing uncertainties and the Wasserstein metric to reformulate the DRO problem into a tractable convex optimization problem. The DRO is implemented under a model predictive control framework to further reduce the uncertainties of PEVs and RESs. Numerical experiment results validate the efficiency of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信