优化对象检测的深度学习模型

Calin-George Barburescu, Gabriel Iuhasz
{"title":"优化对象检测的深度学习模型","authors":"Calin-George Barburescu, Gabriel Iuhasz","doi":"10.1109/SYNASC51798.2020.00051","DOIUrl":null,"url":null,"abstract":"Deep learning models for object detection have gotten larger and larger over the years, spanning from 3.9M trainable parameters for EfficientDet to 209M for the AmoebaNet-based NAS-FPN detector. Different strategies are currently being researched in order to improve the efficiency of deep learning models for object detection, one of which is running the training and inference of the neural network in low precision. Interesting results have been achieved by researchers, starting from the original paradigm of using operators and doing the necessary operations in IEEE single precision (FP32), to achieving similar accuracies of the models using custom minifloat formats (FP8). The results can be pushed even further by using genetic algorithms for hyperparameter tuning, in order to find specific hyperparameter for the FP8 version of the model. In this paper, we will present the results of our experiments utilizing YOLOv3 with hybrid floating-point format (HFP8). One of the experiments in this paper shows how our solution can be used for checking social distancing guidelines which is a very important topic in the current COVID-19 pandemic.","PeriodicalId":278104,"journal":{"name":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimizing Deep Learning Models for Object Detection\",\"authors\":\"Calin-George Barburescu, Gabriel Iuhasz\",\"doi\":\"10.1109/SYNASC51798.2020.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models for object detection have gotten larger and larger over the years, spanning from 3.9M trainable parameters for EfficientDet to 209M for the AmoebaNet-based NAS-FPN detector. Different strategies are currently being researched in order to improve the efficiency of deep learning models for object detection, one of which is running the training and inference of the neural network in low precision. Interesting results have been achieved by researchers, starting from the original paradigm of using operators and doing the necessary operations in IEEE single precision (FP32), to achieving similar accuracies of the models using custom minifloat formats (FP8). The results can be pushed even further by using genetic algorithms for hyperparameter tuning, in order to find specific hyperparameter for the FP8 version of the model. In this paper, we will present the results of our experiments utilizing YOLOv3 with hybrid floating-point format (HFP8). One of the experiments in this paper shows how our solution can be used for checking social distancing guidelines which is a very important topic in the current COVID-19 pandemic.\",\"PeriodicalId\":278104,\"journal\":{\"name\":\"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC51798.2020.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC51798.2020.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多年来,用于目标检测的深度学习模型变得越来越大,从高效det的390万个可训练参数到基于amoebanet的NAS-FPN检测器的209万个可训练参数。为了提高目标检测的深度学习模型的效率,目前人们正在研究不同的策略,其中之一就是以低精度运行神经网络的训练和推理。研究人员已经取得了有趣的结果,从使用运算符的原始范例开始,并在IEEE单精度(FP32)中进行必要的操作,到使用自定义miniffloat格式(FP8)实现类似的模型精度。通过使用遗传算法进行超参数调优,可以进一步推动结果,以便为模型的FP8版本找到特定的超参数。在本文中,我们将介绍我们使用YOLOv3与混合浮点格式(HFP8)的实验结果。本文中的一个实验展示了我们的解决方案如何用于检查社交距离指南,这是当前COVID-19大流行中一个非常重要的话题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Deep Learning Models for Object Detection
Deep learning models for object detection have gotten larger and larger over the years, spanning from 3.9M trainable parameters for EfficientDet to 209M for the AmoebaNet-based NAS-FPN detector. Different strategies are currently being researched in order to improve the efficiency of deep learning models for object detection, one of which is running the training and inference of the neural network in low precision. Interesting results have been achieved by researchers, starting from the original paradigm of using operators and doing the necessary operations in IEEE single precision (FP32), to achieving similar accuracies of the models using custom minifloat formats (FP8). The results can be pushed even further by using genetic algorithms for hyperparameter tuning, in order to find specific hyperparameter for the FP8 version of the model. In this paper, we will present the results of our experiments utilizing YOLOv3 with hybrid floating-point format (HFP8). One of the experiments in this paper shows how our solution can be used for checking social distancing guidelines which is a very important topic in the current COVID-19 pandemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信