V. Osipova, B. Wunderle, J. Arnold, J. Heilmann, T. Mahanta
{"title":"不同温度下铝和铜薄膜的加速振动疲劳试验","authors":"V. Osipova, B. Wunderle, J. Arnold, J. Heilmann, T. Mahanta","doi":"10.1109/ESTC.2018.8546488","DOIUrl":null,"url":null,"abstract":"In this paper we summarize extensive literature review on the fatigue of thin metal films. Additionally we describe our custom-made set-up for isothermal mechanical cycling of thin films on cantilever-like reflective substrates. The device is made for in-resonance testing in the frequency ranges from 10 Hz to 1000 Hz and allows detection of failure by shift in stiffness of the sample.","PeriodicalId":198238,"journal":{"name":"2018 7th Electronic System-Integration Technology Conference (ESTC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Accelerated Vibrational Fatigue Testing of Thin Aluminum and Copper Films at Different Temperatures\",\"authors\":\"V. Osipova, B. Wunderle, J. Arnold, J. Heilmann, T. Mahanta\",\"doi\":\"10.1109/ESTC.2018.8546488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we summarize extensive literature review on the fatigue of thin metal films. Additionally we describe our custom-made set-up for isothermal mechanical cycling of thin films on cantilever-like reflective substrates. The device is made for in-resonance testing in the frequency ranges from 10 Hz to 1000 Hz and allows detection of failure by shift in stiffness of the sample.\",\"PeriodicalId\":198238,\"journal\":{\"name\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTC.2018.8546488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Electronic System-Integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2018.8546488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerated Vibrational Fatigue Testing of Thin Aluminum and Copper Films at Different Temperatures
In this paper we summarize extensive literature review on the fatigue of thin metal films. Additionally we describe our custom-made set-up for isothermal mechanical cycling of thin films on cantilever-like reflective substrates. The device is made for in-resonance testing in the frequency ranges from 10 Hz to 1000 Hz and allows detection of failure by shift in stiffness of the sample.