基于正交匹配跟踪的网格上DOA估计方法

Abhishek Aich, P. Palanisamy
{"title":"基于正交匹配跟踪的网格上DOA估计方法","authors":"Abhishek Aich, P. Palanisamy","doi":"10.1109/CSPC.2017.8305896","DOIUrl":null,"url":null,"abstract":"Direction of Arrival (DOA) estimation of multiple narrow-band coherent or partially coherent sources is a major challenge in array signal processing. Though many subspacebased algorithms are available in literature, none of them tackle the problem of resolving coherent sources directly, e.g. without modifying the sample data covariance matrix. Compressive Sensing (CS) based sparse recovery algorithms are being applied as a novel technique to this area. In this paper, we introduce Orthogonal Matching Pursuit (OMP) to the DOA estimation problem. We demonstrate how a DOA estimation problem can be modelled for sparse recovery problem and then exploited using OMP to obtain the set of DOAs. Moreover, this algorithm uses only one snapshot to obtain the results. The simulation results demonstrate the validity and advantages of using OMP algorithm over the existing subspace-based algorithms.","PeriodicalId":123773,"journal":{"name":"2017 International Conference on Signal Processing and Communication (ICSPC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"On-grid DOA estimation method using orthogonal matching pursuit\",\"authors\":\"Abhishek Aich, P. Palanisamy\",\"doi\":\"10.1109/CSPC.2017.8305896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direction of Arrival (DOA) estimation of multiple narrow-band coherent or partially coherent sources is a major challenge in array signal processing. Though many subspacebased algorithms are available in literature, none of them tackle the problem of resolving coherent sources directly, e.g. without modifying the sample data covariance matrix. Compressive Sensing (CS) based sparse recovery algorithms are being applied as a novel technique to this area. In this paper, we introduce Orthogonal Matching Pursuit (OMP) to the DOA estimation problem. We demonstrate how a DOA estimation problem can be modelled for sparse recovery problem and then exploited using OMP to obtain the set of DOAs. Moreover, this algorithm uses only one snapshot to obtain the results. The simulation results demonstrate the validity and advantages of using OMP algorithm over the existing subspace-based algorithms.\",\"PeriodicalId\":123773,\"journal\":{\"name\":\"2017 International Conference on Signal Processing and Communication (ICSPC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Signal Processing and Communication (ICSPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPC.2017.8305896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signal Processing and Communication (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPC.2017.8305896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

多个窄带相干或部分相干源的DOA估计是阵列信号处理中的一个重要问题。虽然文献中有许多基于子空间的算法,但它们都没有直接解决相干源的问题,例如,不修改样本数据协方差矩阵。基于压缩感知(CS)的稀疏恢复算法作为一种新技术正在这一领域得到应用。本文将正交匹配追踪(OMP)引入到DOA估计问题中。我们演示了如何为稀疏恢复问题建模DOA估计问题,然后利用OMP来获得DOA集。而且,该算法只使用一个快照来获得结果。仿真结果验证了OMP算法相对于现有基于子空间的算法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-grid DOA estimation method using orthogonal matching pursuit
Direction of Arrival (DOA) estimation of multiple narrow-band coherent or partially coherent sources is a major challenge in array signal processing. Though many subspacebased algorithms are available in literature, none of them tackle the problem of resolving coherent sources directly, e.g. without modifying the sample data covariance matrix. Compressive Sensing (CS) based sparse recovery algorithms are being applied as a novel technique to this area. In this paper, we introduce Orthogonal Matching Pursuit (OMP) to the DOA estimation problem. We demonstrate how a DOA estimation problem can be modelled for sparse recovery problem and then exploited using OMP to obtain the set of DOAs. Moreover, this algorithm uses only one snapshot to obtain the results. The simulation results demonstrate the validity and advantages of using OMP algorithm over the existing subspace-based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信