基于网络分析的设备健康监测图形化方法

W. Ki, Minjae Choi, Yong-Koun Lee, Kiseop Yoon, Hanchan Hwang, Jisoo Park, Taewook Kang, Jaeyong Park, Younghoon Kim
{"title":"基于网络分析的设备健康监测图形化方法","authors":"W. Ki, Minjae Choi, Yong-Koun Lee, Kiseop Yoon, Hanchan Hwang, Jisoo Park, Taewook Kang, Jaeyong Park, Younghoon Kim","doi":"10.1109/EDTM55494.2023.10102976","DOIUrl":null,"url":null,"abstract":"As the complexity of semiconductor devices increases, new approaches are required for monitoring equipment health. In this paper, we adopt the weighted gene co-expression network analysis (WGCNA) for sensor data following in three stages: 1) construction of networks, 2) identification of modules, and 3) detection of abnormal sensors by the graphical approach. Therefore, manufacturing process conditions are able to modify, the similarity between sensors was increased, and in return 0.3% yield rate gain is achieved.","PeriodicalId":418413,"journal":{"name":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphical approach of equipment health monitoring using network analysis\",\"authors\":\"W. Ki, Minjae Choi, Yong-Koun Lee, Kiseop Yoon, Hanchan Hwang, Jisoo Park, Taewook Kang, Jaeyong Park, Younghoon Kim\",\"doi\":\"10.1109/EDTM55494.2023.10102976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the complexity of semiconductor devices increases, new approaches are required for monitoring equipment health. In this paper, we adopt the weighted gene co-expression network analysis (WGCNA) for sensor data following in three stages: 1) construction of networks, 2) identification of modules, and 3) detection of abnormal sensors by the graphical approach. Therefore, manufacturing process conditions are able to modify, the similarity between sensors was increased, and in return 0.3% yield rate gain is achieved.\",\"PeriodicalId\":418413,\"journal\":{\"name\":\"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDTM55494.2023.10102976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM55494.2023.10102976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着半导体设备复杂性的增加,需要新的方法来监测设备的健康状况。在本文中,我们对传感器数据采用加权基因共表达网络分析(WGCNA),分为三个阶段:1)网络构建,2)模块识别,3)通过图形方法检测异常传感器。因此,可以修改制造工艺条件,增加传感器之间的相似性,从而实现0.3%的良率增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphical approach of equipment health monitoring using network analysis
As the complexity of semiconductor devices increases, new approaches are required for monitoring equipment health. In this paper, we adopt the weighted gene co-expression network analysis (WGCNA) for sensor data following in three stages: 1) construction of networks, 2) identification of modules, and 3) detection of abnormal sensors by the graphical approach. Therefore, manufacturing process conditions are able to modify, the similarity between sensors was increased, and in return 0.3% yield rate gain is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信