Takagi-Sugeno描述符模型观测器设计的LMI方法

V. Estrada-Manzo, T. Guerra, Z. Lendek
{"title":"Takagi-Sugeno描述符模型观测器设计的LMI方法","authors":"V. Estrada-Manzo, T. Guerra, Z. Lendek","doi":"10.1109/AQTR.2014.6857823","DOIUrl":null,"url":null,"abstract":"This work presents a novel observer design for nonlinear descriptor systems using their Takagi-Sugeno representation. The approach allows obtaining more relaxed results than previous literature by changing the extended estimated state vector; this step permits using a full observer gain. The obtained conditions are pure LMI. Moreover, previous results are always included by the new ones. An example illustrates the benefits of the proposed method.","PeriodicalId":297141,"journal":{"name":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An LMI approach for observer design for Takagi-Sugeno descriptor models\",\"authors\":\"V. Estrada-Manzo, T. Guerra, Z. Lendek\",\"doi\":\"10.1109/AQTR.2014.6857823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a novel observer design for nonlinear descriptor systems using their Takagi-Sugeno representation. The approach allows obtaining more relaxed results than previous literature by changing the extended estimated state vector; this step permits using a full observer gain. The obtained conditions are pure LMI. Moreover, previous results are always included by the new ones. An example illustrates the benefits of the proposed method.\",\"PeriodicalId\":297141,\"journal\":{\"name\":\"2014 IEEE International Conference on Automation, Quality and Testing, Robotics\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Automation, Quality and Testing, Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AQTR.2014.6857823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2014.6857823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文利用Takagi-Sugeno表示提出了一种新的非线性描述子系统观测器设计。该方法允许通过改变扩展估计状态向量获得比以前文献更宽松的结果;这一步允许使用一个完整的观察者增益。所得条件为纯LMI。此外,以前的结果总是包含在新的结果中。算例说明了所提方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An LMI approach for observer design for Takagi-Sugeno descriptor models
This work presents a novel observer design for nonlinear descriptor systems using their Takagi-Sugeno representation. The approach allows obtaining more relaxed results than previous literature by changing the extended estimated state vector; this step permits using a full observer gain. The obtained conditions are pure LMI. Moreover, previous results are always included by the new ones. An example illustrates the benefits of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信