模糊神经网络和遗传算法在医学图像解释中的应用

Nacéra Benamrane, A. Aribi, L. Kraoula
{"title":"模糊神经网络和遗传算法在医学图像解释中的应用","authors":"Nacéra Benamrane, A. Aribi, L. Kraoula","doi":"10.1109/GMAI.2006.20","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach for detection and specification of anomalies present in medical images. The idea is to combine three metaphors: neural networks, fuzzy logic and genetic algorithms in a hybrid system. The neural networks and fuzzy logic metaphors are coupled in one system called fuzzy neural networks. The genetic algorithm adds to this hybridizing the property of total research like an initialization of the fuzzy neural networks training algorithm witch is based on an adapted version of the back propagation algorithm. After applying the growing region algorithm to extract regions, the fuzzy neural network detect the suspect regions, which are interpreted by the fuzzy neural network of specification. Some of experimental results on brain images show the feasibility of the proposed approach","PeriodicalId":438098,"journal":{"name":"Geometric Modeling and Imaging--New Trends (GMAI'06)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Fuzzy Neural Networks and Genetic Algorithms for Medical Images Interpretation\",\"authors\":\"Nacéra Benamrane, A. Aribi, L. Kraoula\",\"doi\":\"10.1109/GMAI.2006.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an approach for detection and specification of anomalies present in medical images. The idea is to combine three metaphors: neural networks, fuzzy logic and genetic algorithms in a hybrid system. The neural networks and fuzzy logic metaphors are coupled in one system called fuzzy neural networks. The genetic algorithm adds to this hybridizing the property of total research like an initialization of the fuzzy neural networks training algorithm witch is based on an adapted version of the back propagation algorithm. After applying the growing region algorithm to extract regions, the fuzzy neural network detect the suspect regions, which are interpreted by the fuzzy neural network of specification. Some of experimental results on brain images show the feasibility of the proposed approach\",\"PeriodicalId\":438098,\"journal\":{\"name\":\"Geometric Modeling and Imaging--New Trends (GMAI'06)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric Modeling and Imaging--New Trends (GMAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GMAI.2006.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric Modeling and Imaging--New Trends (GMAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GMAI.2006.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

在本文中,我们提出了一种检测和规范医学图像中存在的异常的方法。这个想法是在一个混合系统中结合三个隐喻:神经网络、模糊逻辑和遗传算法。神经网络和模糊逻辑隐喻耦合在一个称为模糊神经网络的系统中。遗传算法增加了这种杂交的总体研究性质,就像模糊神经网络训练算法的初始化一样,它是基于一个改编版本的反向传播算法。采用生长区域算法提取区域后,模糊神经网络检测可疑区域,并用规范模糊神经网络对可疑区域进行解释。一些脑图像的实验结果表明了该方法的可行性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Neural Networks and Genetic Algorithms for Medical Images Interpretation
In this paper, we propose an approach for detection and specification of anomalies present in medical images. The idea is to combine three metaphors: neural networks, fuzzy logic and genetic algorithms in a hybrid system. The neural networks and fuzzy logic metaphors are coupled in one system called fuzzy neural networks. The genetic algorithm adds to this hybridizing the property of total research like an initialization of the fuzzy neural networks training algorithm witch is based on an adapted version of the back propagation algorithm. After applying the growing region algorithm to extract regions, the fuzzy neural network detect the suspect regions, which are interpreted by the fuzzy neural network of specification. Some of experimental results on brain images show the feasibility of the proposed approach
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信