Ankita Karale, Milena Lazarova, P. Koleva, V. Poulkov
{"title":"基于群优化的流数据高级内存高效离群点检测方法","authors":"Ankita Karale, Milena Lazarova, P. Koleva, V. Poulkov","doi":"10.1109/TSP52935.2021.9522667","DOIUrl":null,"url":null,"abstract":"Outlier detection techniques detect abnormal behavior in data and are useful in a variety of applications. In a real-life scenario, various applications generate large-scale data every day. Outlier detection over such continuous/streaming data is a challenging task due to its volume and limitations in processing memory. This paper presents an outlier detection approach called Advanced Memory Efficient Outlier Detection (A-MEOD) that is able to find outliers in streaming data in a memory-efficient manner. The outlier detection is based on the MEOD technique and Local Correlation Integral (LOCI) algorithm. Further the A-MEOD technique reduces the LOCI calculations and finds the top M outliers using Knorr’s definition. The results of utilization of A-MEOD are compared with MiLOF and MEOD in terms of accuracy, time, and memory requirements.","PeriodicalId":243595,"journal":{"name":"2021 44th International Conference on Telecommunications and Signal Processing (TSP)","volume":"137 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Memory Efficient Outlier Detection Approach for Streaming Data using Swarm Optimization\",\"authors\":\"Ankita Karale, Milena Lazarova, P. Koleva, V. Poulkov\",\"doi\":\"10.1109/TSP52935.2021.9522667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier detection techniques detect abnormal behavior in data and are useful in a variety of applications. In a real-life scenario, various applications generate large-scale data every day. Outlier detection over such continuous/streaming data is a challenging task due to its volume and limitations in processing memory. This paper presents an outlier detection approach called Advanced Memory Efficient Outlier Detection (A-MEOD) that is able to find outliers in streaming data in a memory-efficient manner. The outlier detection is based on the MEOD technique and Local Correlation Integral (LOCI) algorithm. Further the A-MEOD technique reduces the LOCI calculations and finds the top M outliers using Knorr’s definition. The results of utilization of A-MEOD are compared with MiLOF and MEOD in terms of accuracy, time, and memory requirements.\",\"PeriodicalId\":243595,\"journal\":{\"name\":\"2021 44th International Conference on Telecommunications and Signal Processing (TSP)\",\"volume\":\"137 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 44th International Conference on Telecommunications and Signal Processing (TSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSP52935.2021.9522667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 44th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP52935.2021.9522667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced Memory Efficient Outlier Detection Approach for Streaming Data using Swarm Optimization
Outlier detection techniques detect abnormal behavior in data and are useful in a variety of applications. In a real-life scenario, various applications generate large-scale data every day. Outlier detection over such continuous/streaming data is a challenging task due to its volume and limitations in processing memory. This paper presents an outlier detection approach called Advanced Memory Efficient Outlier Detection (A-MEOD) that is able to find outliers in streaming data in a memory-efficient manner. The outlier detection is based on the MEOD technique and Local Correlation Integral (LOCI) algorithm. Further the A-MEOD technique reduces the LOCI calculations and finds the top M outliers using Knorr’s definition. The results of utilization of A-MEOD are compared with MiLOF and MEOD in terms of accuracy, time, and memory requirements.