M. W. Feil, Katja Waschneck, H. Reisinger, J. Berens, T. Aichinger, P. Salmen, G. Rescher, W. Gustin, T. Grasser
{"title":"对碳化硅mosfet栅极开关不稳定性的物理理解","authors":"M. W. Feil, Katja Waschneck, H. Reisinger, J. Berens, T. Aichinger, P. Salmen, G. Rescher, W. Gustin, T. Grasser","doi":"10.1109/IRPS48203.2023.10117740","DOIUrl":null,"url":null,"abstract":"Bias temperature instability (BTI) is a well-investigated degradation mechanism in technologies based on silicon, gallium nitride, or silicon carbide (SiC). Essentially, it leads to a drift in the threshold voltage and to a reduction in mobility after application of a gate bias, and becomes worse at elevated temperatures. However, as discovered recently, the threshold voltage drift of SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) has different properties than those known from BTI when the gate terminal of the device is switched in a bipolar mode. This new degradation mechanism has recently been termed gate switching instability (GSI). To further understand this degradation mechanism and the underlying physics, we have used pre- and post-stress impedance characterization and in-situ ultra-fast threshold voltage measurements. Most importantly, we show that the gate switching leads to the creation of fast, acceptor-like interface defects that lead to a shift in threshold voltage, and hence appear to be responsible for GSI.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Understanding the Physics of Gate Switching Instability in Silicon Carbide MOSFETs\",\"authors\":\"M. W. Feil, Katja Waschneck, H. Reisinger, J. Berens, T. Aichinger, P. Salmen, G. Rescher, W. Gustin, T. Grasser\",\"doi\":\"10.1109/IRPS48203.2023.10117740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bias temperature instability (BTI) is a well-investigated degradation mechanism in technologies based on silicon, gallium nitride, or silicon carbide (SiC). Essentially, it leads to a drift in the threshold voltage and to a reduction in mobility after application of a gate bias, and becomes worse at elevated temperatures. However, as discovered recently, the threshold voltage drift of SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) has different properties than those known from BTI when the gate terminal of the device is switched in a bipolar mode. This new degradation mechanism has recently been termed gate switching instability (GSI). To further understand this degradation mechanism and the underlying physics, we have used pre- and post-stress impedance characterization and in-situ ultra-fast threshold voltage measurements. Most importantly, we show that the gate switching leads to the creation of fast, acceptor-like interface defects that lead to a shift in threshold voltage, and hence appear to be responsible for GSI.\",\"PeriodicalId\":159030,\"journal\":{\"name\":\"2023 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS48203.2023.10117740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10117740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Understanding the Physics of Gate Switching Instability in Silicon Carbide MOSFETs
Bias temperature instability (BTI) is a well-investigated degradation mechanism in technologies based on silicon, gallium nitride, or silicon carbide (SiC). Essentially, it leads to a drift in the threshold voltage and to a reduction in mobility after application of a gate bias, and becomes worse at elevated temperatures. However, as discovered recently, the threshold voltage drift of SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) has different properties than those known from BTI when the gate terminal of the device is switched in a bipolar mode. This new degradation mechanism has recently been termed gate switching instability (GSI). To further understand this degradation mechanism and the underlying physics, we have used pre- and post-stress impedance characterization and in-situ ultra-fast threshold voltage measurements. Most importantly, we show that the gate switching leads to the creation of fast, acceptor-like interface defects that lead to a shift in threshold voltage, and hence appear to be responsible for GSI.