使用基于物理的特征映射和专门设计的DCNN快速准确的机器学习逆光刻

X. Shi, Yan Yan, Tao Zhou, Xueru Yu, Chen Li, Shoumian Chen, Yuhang Zhao
{"title":"使用基于物理的特征映射和专门设计的DCNN快速准确的机器学习逆光刻","authors":"X. Shi, Yan Yan, Tao Zhou, Xueru Yu, Chen Li, Shoumian Chen, Yuhang Zhao","doi":"10.1109/IWAPS51164.2020.9286814","DOIUrl":null,"url":null,"abstract":"To achieve full chip inverse lithography technology (ILT) solution, we proposed a hybrid approach in this study by combining first few physics based feature maps as model input with a specially designed DCNN structure to learn the rigorous ILT algorithm. Our results show that this approach can make machine learning ILT easy, fast and more accurate.","PeriodicalId":165983,"journal":{"name":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fast and Accurate Machine Learning Inverse Lithography Using Physics Based Feature Maps and Specially Designed DCNN\",\"authors\":\"X. Shi, Yan Yan, Tao Zhou, Xueru Yu, Chen Li, Shoumian Chen, Yuhang Zhao\",\"doi\":\"10.1109/IWAPS51164.2020.9286814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve full chip inverse lithography technology (ILT) solution, we proposed a hybrid approach in this study by combining first few physics based feature maps as model input with a specially designed DCNN structure to learn the rigorous ILT algorithm. Our results show that this approach can make machine learning ILT easy, fast and more accurate.\",\"PeriodicalId\":165983,\"journal\":{\"name\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAPS51164.2020.9286814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAPS51164.2020.9286814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为了实现全芯片逆光刻技术(ILT)解决方案,我们在本研究中提出了一种混合方法,将前几个基于物理的特征映射作为模型输入与专门设计的DCNN结构相结合,以学习严格的ILT算法。我们的研究结果表明,这种方法可以使机器学习ILT变得简单、快速和更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Accurate Machine Learning Inverse Lithography Using Physics Based Feature Maps and Specially Designed DCNN
To achieve full chip inverse lithography technology (ILT) solution, we proposed a hybrid approach in this study by combining first few physics based feature maps as model input with a specially designed DCNN structure to learn the rigorous ILT algorithm. Our results show that this approach can make machine learning ILT easy, fast and more accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信