基于模型和数据驱动的汽车电动助力转向系统故障综合检测与诊断方法

Rajeev Ghimire, C. Sankavaram, A. Ghahari, K. Pattipati, Y. Ghoneim, Mark N Howell, M. Salman
{"title":"基于模型和数据驱动的汽车电动助力转向系统故障综合检测与诊断方法","authors":"Rajeev Ghimire, C. Sankavaram, A. Ghahari, K. Pattipati, Y. Ghoneim, Mark N Howell, M. Salman","doi":"10.1109/AUTEST.2011.6058760","DOIUrl":null,"url":null,"abstract":"Integrity of electric power steering system is vital to vehicle handling and driving performance. Advances in electric power steering (EPS) system have increased complexity in detecting and isolating faults. In this paper, we propose a hybrid model-based and data-driven approach to fault detection and diagnosis (FDD) in an EPS system. We develop a physics-based model of an EPS system, conduct fault injection experiments to derive fault-sensor measurement dependencies, and investigate various FDD schemes to detect and isolate the faults. Finally, we use an SVM regression technique to estimate the severity of faults.","PeriodicalId":110721,"journal":{"name":"2011 IEEE AUTOTESTCON","volume":"137 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Integrated model-based and data-driven fault detection and diagnosis approach for an automotive electric power steering system\",\"authors\":\"Rajeev Ghimire, C. Sankavaram, A. Ghahari, K. Pattipati, Y. Ghoneim, Mark N Howell, M. Salman\",\"doi\":\"10.1109/AUTEST.2011.6058760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrity of electric power steering system is vital to vehicle handling and driving performance. Advances in electric power steering (EPS) system have increased complexity in detecting and isolating faults. In this paper, we propose a hybrid model-based and data-driven approach to fault detection and diagnosis (FDD) in an EPS system. We develop a physics-based model of an EPS system, conduct fault injection experiments to derive fault-sensor measurement dependencies, and investigate various FDD schemes to detect and isolate the faults. Finally, we use an SVM regression technique to estimate the severity of faults.\",\"PeriodicalId\":110721,\"journal\":{\"name\":\"2011 IEEE AUTOTESTCON\",\"volume\":\"137 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE AUTOTESTCON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUTEST.2011.6058760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEST.2011.6058760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

电动助力转向系统的完整性对车辆的操纵性能和驾驶性能至关重要。随着电动助力转向(EPS)系统的发展,故障的检测和隔离变得越来越复杂。本文提出了一种基于模型和数据驱动的EPS系统故障检测与诊断方法。我们开发了一个基于物理的EPS系统模型,进行故障注入实验以获得故障传感器测量依赖关系,并研究了各种FDD方案来检测和隔离故障。最后,我们使用SVM回归技术来估计故障的严重程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated model-based and data-driven fault detection and diagnosis approach for an automotive electric power steering system
Integrity of electric power steering system is vital to vehicle handling and driving performance. Advances in electric power steering (EPS) system have increased complexity in detecting and isolating faults. In this paper, we propose a hybrid model-based and data-driven approach to fault detection and diagnosis (FDD) in an EPS system. We develop a physics-based model of an EPS system, conduct fault injection experiments to derive fault-sensor measurement dependencies, and investigate various FDD schemes to detect and isolate the faults. Finally, we use an SVM regression technique to estimate the severity of faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信