基于三角函数的倒立摆问题分析与求解

B. Moulika, R. Chowdhuryb, Anindita Gangulyb, Himadri Basuc, C.K. Ramanb
{"title":"基于三角函数的倒立摆问题分析与求解","authors":"B. Moulika, R. Chowdhuryb, Anindita Gangulyb, Himadri Basuc, C.K. Ramanb","doi":"10.1109/RDCAPE.2017.8358262","DOIUrl":null,"url":null,"abstract":"Differential equations of different types and orders are of utmost importance for mathematical modeling of control system problems. State variable method uses the concept of expressing a number of first order differential equations in vector matrix form to model and analyze/synthesize control systems. The present work takes into account the Analysis and Solution of Homogeneous and Non-homogeneous (Time invariant) Differential State Equations and solving inverted pendulum problem with this approach.","PeriodicalId":442235,"journal":{"name":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triangular function based analysis and solution of inverted pendulum problem\",\"authors\":\"B. Moulika, R. Chowdhuryb, Anindita Gangulyb, Himadri Basuc, C.K. Ramanb\",\"doi\":\"10.1109/RDCAPE.2017.8358262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential equations of different types and orders are of utmost importance for mathematical modeling of control system problems. State variable method uses the concept of expressing a number of first order differential equations in vector matrix form to model and analyze/synthesize control systems. The present work takes into account the Analysis and Solution of Homogeneous and Non-homogeneous (Time invariant) Differential State Equations and solving inverted pendulum problem with this approach.\",\"PeriodicalId\":442235,\"journal\":{\"name\":\"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RDCAPE.2017.8358262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2017.8358262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不同类型和阶次的微分方程对于控制系统问题的数学建模至关重要。状态变量法是将若干一阶微分方程表示为向量矩阵形式的概念,对控制系统进行建模和分析/综合。本文研究了齐次和非齐次(时不变)微分状态方程的分析与求解,并利用该方法求解倒立摆问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triangular function based analysis and solution of inverted pendulum problem
Differential equations of different types and orders are of utmost importance for mathematical modeling of control system problems. State variable method uses the concept of expressing a number of first order differential equations in vector matrix form to model and analyze/synthesize control systems. The present work takes into account the Analysis and Solution of Homogeneous and Non-homogeneous (Time invariant) Differential State Equations and solving inverted pendulum problem with this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信