基于岭回归和支持向量机的延河流域世行项目社会后评价

Li Chen
{"title":"基于岭回归和支持向量机的延河流域世行项目社会后评价","authors":"Li Chen","doi":"10.1109/ISA.2011.5873358","DOIUrl":null,"url":null,"abstract":"The multicollinearity exists in the interpretive variable of regression model , it often brings inconvenience to social post-evaluation. The ridge regression has advantages than LS method. The support vector machines (SVM) is a novel machine learning tool in data mining. It is based on the structural risk minimization(SRM) principle,which has been shown to be more superior than the traditional empirical risk minimization(ERM).In this paper,we combined ridge regression and support vector machines to the World Bank projects in Yanhe Basin. The oretical analysis and experimental results show that the combination is effective.","PeriodicalId":128163,"journal":{"name":"2011 3rd International Workshop on Intelligent Systems and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social Post-Evaluation of World Bank Projects in Yanhe Basin Based on Ridge Regression and Support Vector Machines\",\"authors\":\"Li Chen\",\"doi\":\"10.1109/ISA.2011.5873358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multicollinearity exists in the interpretive variable of regression model , it often brings inconvenience to social post-evaluation. The ridge regression has advantages than LS method. The support vector machines (SVM) is a novel machine learning tool in data mining. It is based on the structural risk minimization(SRM) principle,which has been shown to be more superior than the traditional empirical risk minimization(ERM).In this paper,we combined ridge regression and support vector machines to the World Bank projects in Yanhe Basin. The oretical analysis and experimental results show that the combination is effective.\",\"PeriodicalId\":128163,\"journal\":{\"name\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISA.2011.5873358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISA.2011.5873358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回归模型的解释变量存在多重共线性,往往给社会后评价带来不便。脊线回归与LS方法相比具有优势。支持向量机(SVM)是一种新的数据挖掘机器学习工具。它基于结构性风险最小化(SRM)原则,已被证明比传统的经验风险最小化(ERM)更优越。本文将脊回归与支持向量机相结合,应用于延河流域世界银行项目。理论分析和实验结果表明,该组合是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social Post-Evaluation of World Bank Projects in Yanhe Basin Based on Ridge Regression and Support Vector Machines
The multicollinearity exists in the interpretive variable of regression model , it often brings inconvenience to social post-evaluation. The ridge regression has advantages than LS method. The support vector machines (SVM) is a novel machine learning tool in data mining. It is based on the structural risk minimization(SRM) principle,which has been shown to be more superior than the traditional empirical risk minimization(ERM).In this paper,we combined ridge regression and support vector machines to the World Bank projects in Yanhe Basin. The oretical analysis and experimental results show that the combination is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信