使用基于维基百科概念的文档表示的短文本分类

Xiang Wang, R. Chen, Yan Jia, Bin Zhou
{"title":"使用基于维基百科概念的文档表示的短文本分类","authors":"Xiang Wang, R. Chen, Yan Jia, Bin Zhou","doi":"10.1109/ITA.2013.114","DOIUrl":null,"url":null,"abstract":"Short text classification is a difficult and challenging task in information retrieval systems since the text data is short, sparse and multidimensional. In this paper, we represent short text with Wikipedia concepts for classification. Short document text is mapped to Wikipedia concepts and the concepts are then used to represent document for text categorization. Traditional methods for classification such as SVM can be used to perform text categorization on the Wikipedia concept document representation. Experimental evaluation on real Google search snippets shows that our approach outperforms the traditional BOW method and gives good performance. Although it's not better than the state-of-the-art classifier (see e.g. Phan et al. WWW '08), our method can be easily implemented with low cost.","PeriodicalId":285687,"journal":{"name":"2013 International Conference on Information Technology and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Short Text Classification Using Wikipedia Concept Based Document Representation\",\"authors\":\"Xiang Wang, R. Chen, Yan Jia, Bin Zhou\",\"doi\":\"10.1109/ITA.2013.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short text classification is a difficult and challenging task in information retrieval systems since the text data is short, sparse and multidimensional. In this paper, we represent short text with Wikipedia concepts for classification. Short document text is mapped to Wikipedia concepts and the concepts are then used to represent document for text categorization. Traditional methods for classification such as SVM can be used to perform text categorization on the Wikipedia concept document representation. Experimental evaluation on real Google search snippets shows that our approach outperforms the traditional BOW method and gives good performance. Although it's not better than the state-of-the-art classifier (see e.g. Phan et al. WWW '08), our method can be easily implemented with low cost.\",\"PeriodicalId\":285687,\"journal\":{\"name\":\"2013 International Conference on Information Technology and Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Information Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2013.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2013.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

摘要由于文本数据的短小、稀疏和多维性,短文本分类是信息检索系统中一个非常困难和具有挑战性的任务。在本文中,我们用维基百科的概念表示短文本进行分类。将短文档文本映射到Wikipedia概念,然后使用这些概念表示文档进行文本分类。传统的分类方法(如SVM)可用于对维基百科概念文档表示进行文本分类。对真实Google搜索片段的实验评估表明,该方法优于传统的BOW方法,具有良好的性能。尽管它并不比最先进的分类器更好(参见Phan等人)。WWW '08),我们的方法容易实现,成本低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short Text Classification Using Wikipedia Concept Based Document Representation
Short text classification is a difficult and challenging task in information retrieval systems since the text data is short, sparse and multidimensional. In this paper, we represent short text with Wikipedia concepts for classification. Short document text is mapped to Wikipedia concepts and the concepts are then used to represent document for text categorization. Traditional methods for classification such as SVM can be used to perform text categorization on the Wikipedia concept document representation. Experimental evaluation on real Google search snippets shows that our approach outperforms the traditional BOW method and gives good performance. Although it's not better than the state-of-the-art classifier (see e.g. Phan et al. WWW '08), our method can be easily implemented with low cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信