把黑盒子涂成白色:解读基于算法的交易策略

André Bina Possatto
{"title":"把黑盒子涂成白色:解读基于算法的交易策略","authors":"André Bina Possatto","doi":"10.12660/rbfin.v20n3.2022.81999","DOIUrl":null,"url":null,"abstract":"\nDifficulty understanding how a black box model makes predictions undermines machine learning's success in financial markets. We show how to employ model-agnostic methods to carry out machine learning stock market predictions that are more transparent to a human investor. We create long-short investment strategies using a tree-based fundamental analysis. We apply the models to the Brazilian stock market, achieving an out-of-sample expected annual return of 26.4% with a Sharpe ratio of 0.50. Ensembles between the long and short legs improve Sharpe ratio up to 1.26. Our strategy has low asset turnover and hence transaction costs do not harm performance too much. Interpretation shows differences in the main drivers of over- and underperformance.\n","PeriodicalId":152637,"journal":{"name":"Brazilian Review of Finance","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Painting the black box white: Interpreting an algorithm-based trading strategy\",\"authors\":\"André Bina Possatto\",\"doi\":\"10.12660/rbfin.v20n3.2022.81999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nDifficulty understanding how a black box model makes predictions undermines machine learning's success in financial markets. We show how to employ model-agnostic methods to carry out machine learning stock market predictions that are more transparent to a human investor. We create long-short investment strategies using a tree-based fundamental analysis. We apply the models to the Brazilian stock market, achieving an out-of-sample expected annual return of 26.4% with a Sharpe ratio of 0.50. Ensembles between the long and short legs improve Sharpe ratio up to 1.26. Our strategy has low asset turnover and hence transaction costs do not harm performance too much. Interpretation shows differences in the main drivers of over- and underperformance.\\n\",\"PeriodicalId\":152637,\"journal\":{\"name\":\"Brazilian Review of Finance\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Review of Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12660/rbfin.v20n3.2022.81999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Review of Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12660/rbfin.v20n3.2022.81999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

难以理解黑箱模型如何进行预测,会削弱机器学习在金融市场上的成功。我们展示了如何使用模型不可知的方法来进行机器学习股票市场预测,这对人类投资者来说更透明。我们使用基于树的基本面分析来创建多空投资策略。我们将模型应用于巴西股票市场,得到样本外预期年回报率为26.4%,夏普比率为0.50。长腿和短腿之间的合奏可以将夏普比提高到1.26。我们的策略是低资产周转率,因此交易成本不会对业绩造成太大影响。解释显示了表现优异和表现不佳的主要驱动因素的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Painting the black box white: Interpreting an algorithm-based trading strategy
Difficulty understanding how a black box model makes predictions undermines machine learning's success in financial markets. We show how to employ model-agnostic methods to carry out machine learning stock market predictions that are more transparent to a human investor. We create long-short investment strategies using a tree-based fundamental analysis. We apply the models to the Brazilian stock market, achieving an out-of-sample expected annual return of 26.4% with a Sharpe ratio of 0.50. Ensembles between the long and short legs improve Sharpe ratio up to 1.26. Our strategy has low asset turnover and hence transaction costs do not harm performance too much. Interpretation shows differences in the main drivers of over- and underperformance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信