利用扩展卡尔曼滤波在移动机器人编队中进行相对定位

Frank E. Schneider, D. Wildermuth
{"title":"利用扩展卡尔曼滤波在移动机器人编队中进行相对定位","authors":"Frank E. Schneider, D. Wildermuth","doi":"10.1109/ROMOCO.2004.240902","DOIUrl":null,"url":null,"abstract":"This work presents a new approach to relative position estimation in multi robot systems. The information of laser scanner systems is used to estimate the relative positions between each other. An extended Kalman filter (EKF) is used to combine this information into one continuously updated position estimation. All robots of a group use these data in order to generate one common coordinate system. Experimental results are presented including formation movement as an example application.","PeriodicalId":176081,"journal":{"name":"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Using an extended Kalman filter for relative localisation in a moving robot formation\",\"authors\":\"Frank E. Schneider, D. Wildermuth\",\"doi\":\"10.1109/ROMOCO.2004.240902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new approach to relative position estimation in multi robot systems. The information of laser scanner systems is used to estimate the relative positions between each other. An extended Kalman filter (EKF) is used to combine this information into one continuously updated position estimation. All robots of a group use these data in order to generate one common coordinate system. Experimental results are presented including formation movement as an example application.\",\"PeriodicalId\":176081,\"journal\":{\"name\":\"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMOCO.2004.240902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMOCO.2004.240902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

提出了一种新的多机器人系统相对位置估计方法。利用激光扫描系统的信息来估计彼此之间的相对位置。利用扩展卡尔曼滤波(EKF)将这些信息组合成一个连续更新的位置估计。一组中的所有机器人都使用这些数据来生成一个共同的坐标系统。给出了实验结果,并以地层运动为例进行了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using an extended Kalman filter for relative localisation in a moving robot formation
This work presents a new approach to relative position estimation in multi robot systems. The information of laser scanner systems is used to estimate the relative positions between each other. An extended Kalman filter (EKF) is used to combine this information into one continuously updated position estimation. All robots of a group use these data in order to generate one common coordinate system. Experimental results are presented including formation movement as an example application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信