基于合成数据的神经网络集成效率分析

P. Menshih, S. Erokhin, M. Gorodnichev
{"title":"基于合成数据的神经网络集成效率分析","authors":"P. Menshih, S. Erokhin, M. Gorodnichev","doi":"10.1109/WECONF48837.2020.9131495","DOIUrl":null,"url":null,"abstract":"Ensembles of neural networks are used to improve the performance of the model and show themselves well in the case of using deep recurrent and convolutional networks on serial [1] and graphic data [2]. The article discusses the advisability of using a snapshot ensemble of not deep feedforward neural networks on a synthetic dataset.","PeriodicalId":303530,"journal":{"name":"2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency Analysis of Neural Networks Ensembles Using Synthetic Data\",\"authors\":\"P. Menshih, S. Erokhin, M. Gorodnichev\",\"doi\":\"10.1109/WECONF48837.2020.9131495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensembles of neural networks are used to improve the performance of the model and show themselves well in the case of using deep recurrent and convolutional networks on serial [1] and graphic data [2]. The article discusses the advisability of using a snapshot ensemble of not deep feedforward neural networks on a synthetic dataset.\",\"PeriodicalId\":303530,\"journal\":{\"name\":\"2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WECONF48837.2020.9131495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WECONF48837.2020.9131495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经网络的集成用于提高模型的性能,并在对序列[1]和图形数据[2]使用深度循环和卷积网络的情况下表现良好。本文讨论了在合成数据集上使用非深度前馈神经网络的快照集合的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency Analysis of Neural Networks Ensembles Using Synthetic Data
Ensembles of neural networks are used to improve the performance of the model and show themselves well in the case of using deep recurrent and convolutional networks on serial [1] and graphic data [2]. The article discusses the advisability of using a snapshot ensemble of not deep feedforward neural networks on a synthetic dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信