基于IWPA-BP神经网络算法的学生学业防范模型研究

Xin Jing, Hao Gao
{"title":"基于IWPA-BP神经网络算法的学生学业防范模型研究","authors":"Xin Jing, Hao Gao","doi":"10.1109/ICCEAI55464.2022.00161","DOIUrl":null,"url":null,"abstract":"In this paper, a Back Propagation (BP) neural network prediction method based on improved wolf swarm algorithm (IWPA) is proposed to study students' academic early warning. The improved wolf pack algorithm has strong search ability, excellent solution ability and fast convergence speed. It can optimize the initial weight and threshold of BP neural network and improve the nonlinear fitting ability of prediction model. The simulation results illustrates that the prediction algorithm has better effectiveness in optimizing accuracy and improving convergence speed in student academic precaution based on UCI data set.","PeriodicalId":414181,"journal":{"name":"2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on student academic precaution model based on IWPA-BP neural network algorithm\",\"authors\":\"Xin Jing, Hao Gao\",\"doi\":\"10.1109/ICCEAI55464.2022.00161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Back Propagation (BP) neural network prediction method based on improved wolf swarm algorithm (IWPA) is proposed to study students' academic early warning. The improved wolf pack algorithm has strong search ability, excellent solution ability and fast convergence speed. It can optimize the initial weight and threshold of BP neural network and improve the nonlinear fitting ability of prediction model. The simulation results illustrates that the prediction algorithm has better effectiveness in optimizing accuracy and improving convergence speed in student academic precaution based on UCI data set.\",\"PeriodicalId\":414181,\"journal\":{\"name\":\"2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEAI55464.2022.00161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEAI55464.2022.00161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于改进狼群算法(IWPA)的BP神经网络预测方法,用于学生学业预警研究。改进的狼群算法具有搜索能力强、求解能力强、收敛速度快的特点。它可以优化BP神经网络的初始权值和阈值,提高预测模型的非线性拟合能力。仿真结果表明,基于UCI数据集的学生学业预防预测算法在优化精度和提高收敛速度方面具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on student academic precaution model based on IWPA-BP neural network algorithm
In this paper, a Back Propagation (BP) neural network prediction method based on improved wolf swarm algorithm (IWPA) is proposed to study students' academic early warning. The improved wolf pack algorithm has strong search ability, excellent solution ability and fast convergence speed. It can optimize the initial weight and threshold of BP neural network and improve the nonlinear fitting ability of prediction model. The simulation results illustrates that the prediction algorithm has better effectiveness in optimizing accuracy and improving convergence speed in student academic precaution based on UCI data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信